Generic interface
All schedules must implement the interface (s::MySchedule)(t)
which returns the schedule value at iteration t
. Additionally, a schedule must implement Base.iterate
from the iteration interface and Base.eltype
when possible. This is the minimal interface required to work with the rest of ParameterSchedulers.jl.
It is strongly recommended that your schedule subtypes ParameterSchedulers.AbstractSchedule
. This will define Base.iterate
and several other pieces of the iteration interface for you.
AbstractSchedule
takes a single type parameter, IsFinite
. Below are the possible values.
AbstractSchedule{true}
: use for finite schedulesBase.IteratorSize
is auto-implemented asBase.HasLength()
Base.axes(s)
is auto-implemented as1:length(s)
- Requires
Base.length
to be implemented by you
AbstractSchedule{false}
: use for infinite schedulesBase.IteratorSize
is auto-implemented asBase.IsInfinite()
Base.axes
is auto-implemented asOneToInf()
AbstractSchedule{missing}
: use for schedules where infinite/finite is unknownBase.IteratorSize
is auto-implemented asBase.SizeUnknown()
Base.axes
is auto-implemented asOneToInf()
AbstractSchedule{T}
: use for schedules where the length depends onT
Base.IteratorSize
is auto-implemented asBase.IteratorSize(T)
ParameterSchedulers.AbstractSchedule
— TypeAbstractSchedule{IsFinite}
Inherit from this type to create a custom schedule. Type parameter IsFinite
can take three values:
true
: for finite schedulesfalse
: for infinite schedulesmissing
: for higher-order schedules where the length is unknown (similar toBase.SizeUnknown()
)T
: a typeT
that indicates all iterator interface functions should forward to this type
Read the generic interface docs section for more.
Examples
Lambda schedule
Below we implement Lambda
to illustrate what is required for a custom schedule. Lambda
simply wraps a function, f
, and the schedule value at iteration t
is f(t)
.
using ParameterSchedulers
using ParameterSchedulers: AbstractSchedule
struct Lambda{T} <: AbstractSchedule{missing}
f::T
end
Next we implement the necessary interfaces. The easiest way to define (s::Lambda)(t)
, then rely on that to define the iteration behavior.
(schedule::Lambda)(t) = schedule.f(t)
Base.iterate(schedule::Lambda, t = 1) = schedule(t), t + 1
# since the eltype is unknown, we indicate it
Base.IteratorEltype(::Type{<:Lambda}) = Base.EltypeUnknown()
Sometimes, it might be more efficient to define Base.iterate
separately from s(t)
. See Step
for an example what this might look like.
You can also define optional parts of the iteration interface if you choose. They are not required for ParameterSchedulers.jl.
Once you are done defining the above interfaces, you can start using Lambda
like any other schedule. For example, below we create a Loop
where the interval is defined as a Lambda
using UnicodePlots
s = Loop(Lambda(log), 4)
t = 1:10 |> collect
lineplot(t, s.(t); border = :none)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
2 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⡜⠀
⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⡸⠀⠀
⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⡰⠁⠀⠀
⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⢠⠃⠀⠀⠀
0 ⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣧⠃⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10⠀
Decay by half
We will implement a Decay2
schedule that halves the parameter value every iteration. First, we define the struct.
using ParameterSchedulers
using ParameterSchedulers: AbstractSchedule
# we subtype AbstractSchedule{IsFinite} with IsFinite == false
# this is because this is an infinite schedule
struct Decay2{T<:Number} <: AbstractSchedule{false}
λ::T
end
After this, we can define the interface functions. Our decay function will be defined as $g(t) = \frac{1}{2^{t - 1}}$.
(schedule::Decay2)(t) = schedule.λ / 2^(t - 1)
Now, we can use Decay2
schedule like any other decay schedule. Below, sequence two different Decay2
schedules.
using UnicodePlots
s = Sequence(Decay2(0.5) => 5, Decay2(0.2) => 5)
t = 1:10 |> collect
lineplot(t, s.(t); border = :none)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
0.5 ⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⢄⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠈⠑⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀⣀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀
0 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠒⠢⠤⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10⠀
A square wave schedule
Now, we'll use the interface to implement a new cyclic schedule, Square
, which implements a square wave.
using ParameterSchedulers
using ParameterSchedulers: AbstractSchedule
struct Square{T<:Number, S<:Integer} <: AbstractSchedule{false}
λ0::T
λ1::T
period::S
end
Now, we implement the interface. The cycle function, $g(t)$, will return λ1
for the first period / 2
steps, then λ0
for the next.
(schedule::Square{T})(t) where T =
(mod(t - 1, schedule.period) < schedule.period / 2) ? schedule.λ1 : schedule.λ0
Square
is ready to use like any other schedule.
using UnicodePlots
s = Square(0.2, 0.8, 4)
t = 1:20 |> collect
lineplot(t, s.(t); border = :none)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
0.8 ⠀⠀⠀⠉⠉⡇⠀⠀⠀⠀⢸⠉⠉⡇⠀⠀⠀⠀⢰⠉⠉⡇⠀⠀⠀⠀⢰⠉⠉⡇⠀⠀⠀⠀⢸⠉⠉⡇⠀⠀⠀⠀
⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀
⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀
⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⢇⠀⠀⠀⠀⢸⠀⠀⢇⠀⠀⠀⠀⡸⠀⠀⡇⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠸⡀⠀⠀⢠⠃⠀⠀⠸⡀⠀⠀⢀⠇⠀⠀⠘⡄⠀⠀⢀⠇⠀⠀⠘⡄⠀⠀⢠⠃⠀⠀⠸⡀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀
⠀⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀
⠀⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢣⠀⠀⡎⠀⠀⠀⠀⢣⠀⠀⡜⠀⠀⠀⠀⢱⠀⠀⡜⠀⠀⠀⠀⢱⠀⠀⡎⠀⠀⠀⠀⢣⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀
0.2 ⠀⠀⠀⠀⠀⠀⢸⣀⣀⡇⠀⠀⠀⠀⢸⣀⣀⡇⠀⠀⠀⠀⢸⣀⣀⡇⠀⠀⠀⠀⢸⣀⣀⡇⠀⠀⠀⠀⢸⣀⣀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀20⠀