How to find functionality

For some kinds of functionality, FastAI.jl provides feature registries that allow you to search for and use features. The following registries currently exist:

Domain packages

Functionality is registered by domain packages such as FastVision and FastTabular . You need to import the respective packages to be able to find their functionality in their registry.

To load functionality:

  1. Get an entry using its ID

    
    			
    			
    			
    			using
    			
    			 
    
    	
    			FastAI
    			,
    			
    			 
    			FastVision
    			
    
    			
    			entry
    			 
    			=
    			 
    			
    			
    
    	
    			datasets
    			(
    			)
    			[
    			
    			"
    			mnist_var_size_tiny
    			"
    			]
    
    			RegistryEntry(                                                                                                  
                 id  =  "mnist_var_size_tiny"                         (String)                       
        description  =  missing                                       (String)                       
               size  =  missing                                       (String)                       
               tags  =  String[]                                      (Vector{String})               
                                                                    
            package  =  FastAI                                        (Module)                       
         downloaded  =  тип                                             (Bool)                         
             loader  =  type_format (generic function with 1 method)  (FastAI.Datasets.DatasetLoader)
                                                                    
    )
  2. And load it

    
    			
    			
    			
    			load
    			(
    			entry
    			)
    
    			
    7-Zip (a) [64] 17.04 : Copyright (c) 1999-2021 Igor Pavlov : 2017-08-28
    p7zip Version 17.04 (locale=C.UTF-8,Utf16=on,HugeFiles=on,64 bits,4 CPUs AMD EPYC 7763 64-Core Processor                 (A00F11),ASM,AES-NI)
    
    
    Extracting archive: 
    --
    Path = 
    Type = tar
    Code Page = UTF-8
    
    Everything is Ok
    
    Folders: 9
    Files: 1431
    Size:       878654
    Compressed: 747008
    
    
    			/home/runner/.julia/datadeps/fastai-mnist_var_size_tiny

Datasets

Datasets
ID Description Size Tags Package Is downloaded Dataset loader
:id :description :size :tags :package :downloaded :loader
"CUB_200_2011" missing 1GiB String[]

FastAI


false type_format
"bedroom" missing 4.25GiB String[]

FastAI


false type_format
"caltech_101" missing 126MiB String[]

FastAI


false type_format
"cifar10" missing missing String[]

FastAI


false type_format
"cifar100" missing missing String[]

FastAI


false type_format
"food-101"

101 food categories, with 101,000 images; 250 test images and 750 training images per class. The training images were not cleaned. All images were rescaled to have a maximum side length of 512 pixels.


5.3GB String[]

FastAI


false type_format
"imagenette-160"

A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute


1.45GiB String[]

FastAI


false type_format
"imagenette-320"

A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute


missing String[]

FastAI


false type_format
"imagenette"

A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute


missing String[]

FastAI


false type_format
"imagenette2-160"

A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute


missing String[]

FastAI


false type_format
"imagenette2-320"

A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute


missing String[]

FastAI


false type_format
"imagenette2"

A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute


missing String[]

FastAI


false type_format
"imagewang-160" missing 182MiB String[]

FastAI


false type_format
"imagewang-320" missing 639MiB String[]

FastAI


false type_format
"imagewang" missing missing String[]

FastAI


false type_format
"imagewoof-160"

A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog


missing String[]

FastAI


false type_format
"imagewoof-320"

A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog


missing String[]

FastAI


false type_format
"imagewoof"

A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog


missing String[]

FastAI


false type_format
"imagewoof2-160"

A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog


missing String[]

FastAI


false type_format
"imagewoof2-320"

A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog


313MB String[]

FastAI


false type_format
"imagewoof2"

A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog


1.25GiB String[]

FastAI


false type_format
"mnist_png" missing missing String[]

FastAI


false type_format
"mnist_var_size_tiny" missing missing String[]

FastAI


false type_format
"oxford-102-flowers" missing missing String[]

FastAI


false type_format
"oxford-iiit-pet" missing missing String[]

FastAI


false type_format
"stanford-cars" missing missing String[]

FastAI


false type_format
"ag_news_csv" missing 11MB String[]

FastAI


false type_format
"amazon_review_full_csv" missing 600MB String[]

FastAI


false type_format
"amazon_review_polarity_csv" missing 600MB String[]

FastAI


false type_format
"dbpedia_csv" missing 65MB String[]

FastAI


false type_format
"giga-fren" missing 2.4GB String[]

FastAI


false type_format
"imdb" missing 140MB String[]

FastAI


false type_format
"sogou_news_csv" missing 360MB String[]

FastAI


false type_format
"wikitext-103" missing 181MB String[]

FastAI


false type_format
"wikitext-2" missing 4MB String[]

FastAI


false type_format
"yahoo_answers_csv" missing 305MB String[]

FastAI


false type_format
"yelp_review_full_csv" missing 187MB String[]

FastAI


false type_format
"yelp_review_polarity_csv" missing 158MB String[]

FastAI


false type_format
"biwi_head_pose" missing 430MiB String[]

FastAI


false type_format
"camvid" missing 571MB String[]

FastAI


false type_format
"pascal-voc" missing 4.3GB String[]

FastAI


false type_format
"pascal_2007" missing missing String[]

FastAI


false type_format
"pascal_2012" missing missing String[]

FastAI


false type_format
"siim_small" missing missing String[]

FastAI


false type_format
"skin-lesion" missing missing String[]

FastAI


false type_format
"tcga-small" missing missing String[]

FastAI


false type_format
"adult_sample" missing 3.8MB String[]

FastAI


false type_format
"biwi_sample" missing missing String[]

FastAI


false type_format
"camvid_tiny" missing missing String[]

FastAI


false type_format
"dogscats" missing 800MiB String[]

FastAI


false type_format
"human_numbers" missing missing String[]

FastAI


false type_format
"imdb_sample" missing 4KB String[]

FastAI


false type_format
"mnist_sample" missing 3MB String[]

FastAI


false type_format
"mnist_tiny" missing 300KB String[]

FastAI


false type_format
"movie_lens_sample" missing missing String[]

FastAI


false type_format
"planet_sample" missing 14.8MB String[]

FastAI


false type_format
"planet_tiny" missing 1MB String[]

FastAI


false type_format
"coco_sample" missing 3GB String[]

FastAI


false type_format
"coco-train2017" missing missing String[]

FastAI


false type_format
"coco-val2017" missing missing String[]

FastAI


false type_format
"coco-test2017" missing missing String[]

FastAI


false type_format
"coco-unlabeled2017" missing missing String[]

FastAI


false type_format
"coco-image_info_test2017" missing missing String[]

FastAI


false type_format
"coco-image_info_unlabeled2017" missing missing String[]

FastAI


false type_format
"coco-annotations_trainval2017" missing missing String[]

FastAI


false type_format
"coco-stuff_annotations_trainval2017" missing missing String[]

FastAI


false type_format
"coco-panoptic_annotations_trainval2017" missing missing String[]

FastAI


false type_format
"ecg5000"

The original dataset for "ECG5000" is a 20-hour long ECG downloaded from Physionet. The name is BIDMC Congestive Heart Failure Database(chfdb) and it is record "chf07".


10MB String[]

FastAI


false type_format
"atrial"

This is a physionet dataset of two-channel ECG recordings has been created from data used in the Computers in Cardiology Challenge 2004, an open competition with the goal of developing automated methods for predicting spontaneous termination of atrial fibrillation (AF).


226KB String[]

FastAI


false type_format
"natops"

The data is generated by sensors on the hands, elbows, wrists and thumbs. The data are the x,y,z coordinates for each of the eight locations.


5.1MB String[]

FastAI


false type_format
"appliances_energy"

The goal of this dataset is to predict total energy usage in kWh of a house.


15MB String[]

FastAI


false type_format

Data recipes

Dataset recipes
ID Block types Description Is downloaded Dataset ID Package Recipe
:id :blocks :description :downloaded :datasetid :package :recipe
"CUB_200_2011"

(Image{2}, Label)


missing false CUB_200_2011 FastVision ImageFolders
"imagenette"

(Image{2}, Label)


missing false imagenette FastVision ImageFolders
"imagenette2"

(Image{2}, Label)


missing false imagenette2 FastVision ImageFolders
"imagewang-320"

(Image{2}, Label)


missing false imagewang-320 FastVision ImageFolders
"mnist_sample"

(Image{2}, Label)


missing false mnist_sample FastVision ImageFolders
"pascal_2007"

(Image{2}, LabelMulti)


missing false pascal_2007 FastVision ImageTableMultiLabel
"camvid"

(Image{2}, Mask{2})


missing false camvid FastVision ImageSegmentationFolders
"camvid_tiny"

(Image{2}, Mask{2})


missing false camvid_tiny FastVision ImageSegmentationFolders
"imagenette-160"

(Image{2}, Label)


missing false imagenette-160 FastVision ImageFolders
"imagenette-320"

(Image{2}, Label)


missing false imagenette-320 FastVision ImageFolders
"imagewoof2-160"

(Image{2}, Label)


missing false imagewoof2-160 FastVision ImageFolders
"cifar100"

(Image{2}, Label)


missing false cifar100 FastVision ImageFolders
"imagewang-160"

(Image{2}, Label)


missing false imagewang-160 FastVision ImageFolders
"mnist_var_size_tiny"

(Image{2}, Label)


missing false mnist_var_size_tiny FastVision ImageFolders
"cifar10"

(Image{2}, Label)


missing false cifar10 FastVision ImageFolders
"mnist_png"

(Image{2}, Label)


missing false mnist_png FastVision ImageFolders
"caltech_101"

(Image{2}, Label)


missing false caltech_101 FastVision ImageFolders
"food-101"

(Image{2}, Label)


missing false food-101 FastVision ImageFolders
"imagenette2-320"

(Image{2}, Label)


missing false imagenette2-320 FastVision ImageFolders
"imagewoof2"

(Image{2}, Label)


missing false imagewoof2 FastVision ImageFolders
"imagewoof2-320"

(Image{2}, Label)


missing false imagewoof2-320 FastVision ImageFolders
"imagewoof-160"

(Image{2}, Label)


missing false imagewoof-160 FastVision ImageFolders
"imagewoof-320"

(Image{2}, Label)


missing false imagewoof-320 FastVision ImageFolders
"imagewang"

(Image{2}, Label)


missing false imagewang FastVision ImageFolders
"mnist_tiny"

(Image{2}, Label)


missing false mnist_tiny FastVision ImageFolders
"imagewoof"

(Image{2}, Label)


missing false imagewoof FastVision ImageFolders
"imagenette2-160"

(Image{2}, Label)


missing false imagenette2-160 FastVision ImageFolders
"adult_sample"

TableRow


missing false adult_sample FastTabular TableDatasetRecipe
"adult_sample/clf_salary"

(TableRow, Label)


missing false adult_sample FastTabular TableClassificationRecipe
"adult_sample/reg_age"

(TableRow, Continuous)


missing false adult_sample FastTabular TableRegressionRecipe
"imdb_sample"

TableRow


missing false imdb_sample FastTabular TableDatasetRecipe
"imdb_sample/clf"

(TableRow, Label)


missing false imdb_sample FastTabular TableClassificationRecipe

Learning tasks

Learning tasks
ID Name Block types Category Description Learning task Package
:id :name :blocks :category :description :constructor :package
"vision/imageclfmulti" Image classification (multi-label)

(Image, LabelMulti)


supervised

Multi-label image classification task where every image can have multiple class labels associated with it.


ImageClassificationMulti


FastVision


"vision/imagekeypoint" Image keypoint regression

(Image, Keypoints)


supervised

Keypoint regression task with a fixed number of keypoints to be detected.


ImageKeypointRegression


FastVision


"vision/imagesegmentation" Image segmentation

(Image, Mask)


supervised

Semantic segmentation task in which every pixel in an image is classified.


ImageSegmentation


FastVision


"vision/imageclfsingle" Image classification (single-label)

(Image, Label)


supervised

Single-label image classification task where every image has a single class label associated with it.


ImageClassificationSingle


FastVision


"tabular/clfsingle" Tabular classification (single-label)

(TableRow, Label)


supervised

Task where a table row with categorical and continuous variables is classified as one of a number of classes.


TabularClassificationSingle


FastTabular


"tabular/regression" Tabular regression

(TableRow, Continuous)


supervised

Task where a number of continuous variables are regressed from a table row with categorical and continuous variables.


TabularClassificationSingle


FastTabular