fastaidatasets.jl

FastAI/datasets/fastaidatasets.jl is a source file in module FastAI

			
			
			
			
			struct
			 

	
			FastAIDataset
			
			
    
			
			name
			::
			Any
			
    
			
			subfolder
			::
			Any
			
    
			
			extension
			::
			Any
			
    
			
			description
			::
			Any
			
    
			
			checksum
			::
			Any
			
    
			
			datadepname
			::
			Any
			
    
			
			subpath
			::
			Any
			
    
			
			size
			::
			Any
			

			end
			

			

			
			
			struct
			 

	
			TSClassificationDataset
			
			
    
			name
			
    
			extension
			
    
			description
			
    
			checksum
			
    
			datadepname
			
    
			size
			

			end
			

			

			
			
			struct
			 

	
			MonashRegressionDataset
			
			
    
			name
			
    
			dset_id
			
    
			extension
			
    
			description
			
    
			checksum
			
    
			datadepname
			
    
			splits
			
    
			size
			

			end
			

			

			
			const
			
			 

	
			ROOT_URL_FastAI
			 
			=
			 
			
			"
			https://s3.amazonaws.com/fast-ai-
			"
			

			
			const
			
			 

	
			ROOT_URL_TSClassification
			 
			=
			 
			
			"
			http://www.timeseriesclassification.com/Downloads
			"
			

			
			const
			
			 

	
			ROOT_URL_MonashRegression
			 
			=
			 
			
			"
			https://zenodo.org/record/
			"
			

			

			
			function
			 
			

	
			FastAIDataset
			(
			name
			,
			 
			subfolder
			,
			 
			
			checksum
			 
			=
			 
			
			"
			
			"
			
			;
			
                       
			
			extension
			 
			=
			 
			
			"
			tgz
			"
			,
			
                       
			
			description
			 
			=
			 
			
			"
			
			"
			,
			
                       
			
			datadepname
			 
			=
			 
			name
			,
			
                       
			
			subpath
			 
			=
			 
			name
			,
			
                       
			
			size
			 
			=
			 
			
			"
			???
			"
			)
			
			
    
			
			return
			 
			

	
			FastAIDataset
			(
			name
			,
			 
			subfolder
			,
			 
			extension
			,
			 
			description
			,
			 
			checksum
			,
			 
			datadepname
			,
			
                         
			subpath
			,
			 
			size
			)
			

			end
			

			

			
			function
			 
			

	
			TSClassificationDataset
			(
			
        
			name
			,
			 
			
			checksum
			=
			
			"
			
			"
			
			;
			
        
			
			extension
			=
			
			"
			zip
			"
			,
			
        
			
			description
			=
			
			"
			
			"
			,
			
        
			
			datadepname
			=
			
			"
			
			"
			,
			
        
			
			size
			=
			
			"
			???
			"
			)
			
			
    
			
			return
			 
			

	
			TSClassificationDataset
			(
			name
			,
			 
			extension
			,
			 
			description
			,
			 
			checksum
			,
			 
			datadepname
			,
			 
			size
			)
			

			end
			

			

			
			function
			 
			

	
			MonashRegressionDataset
			(
			
        
			name
			,
			 
			dset_id
			,
			 
			
			checksum
			 
			=
			 
			
			"
			
			"
			
			;
			
        
			
			extension
			 
			=
			 
			
			"
			ts
			"
			,
			 
			
			description
			 
			=
			 
			
			"
			
			"
			,
			 
			
			splits
			 
			=
			 
			
			[
			
			"
			TRAIN
			"
			,
			 
			
			"
			TEST
			"
			]
			,
			
        
			
			datadepname
			=
			
			"
			
			"
			,
			 
			
			size
			=
			
			"
			???
			"
			)
			
			
    
			
			return
			 
			

	
			MonashRegressionDataset
			(
			name
			,
			 
			dset_id
			,
			 
			extension
			,
			 
			description
			,
			 
			checksum
			,
			 
			datadepname
			,
			 
			splits
			,
			 
			size
			)
			

			end
			

			

			
			const
			
			 

	
			DESCRIPTIONS
			 
			=
			 
			
			Dict
			(
			
    
			
			
			"
			imagenette
			"
			 
			=>
			 
			
			"
			A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute
			"
			,
			
    
			
			
			"
			imagewoof
			"
			 
			=>
			 
			
			"
			A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog
			"
			,
			
    
			
			
			"
			food-101
			"
			 
			=>
			 
			
			"
			101 food categories, with 101,000 images; 250 test images and 750 training images per class. The training images were not cleaned. All images were rescaled to have a maximum side length of 512 pixels.
			"
			,
			
    
			
			
			"
			ECG5000
			"
			 
			=>
			 
			
			"
			The original dataset for \"ECG5000\" is a 20-hour long ECG downloaded from Physionet. The name is BIDMC Congestive Heart Failure Database(chfdb) and it is record \"chf07\".
			"
			,
			
    
			
			
			"
			AtrialFibrillation
			"
			 
			=>
			 
			
			"
			This is a physionet dataset of two-channel ECG recordings has been created from data used in the Computers in Cardiology Challenge 2004, an open competition with the goal of developing automated methods for predicting spontaneous termination of atrial fibrillation (AF).
			"
			,
			
    
			
			
			"
			NATOPS
			"
			 
			=>
			 
			
			"
			The data is generated by sensors on the hands, elbows, wrists and thumbs. The data are the x,y,z coordinates for each of the eight locations. 
			"
			,
			
    
			
			
			"
			AppliancesEnergy
			"
			 
			=>
			 
			
			"
			The goal of this dataset is to predict total energy usage in kWh of a house.
			"
			,
			

			)
			

			

			
			const
			
			 

	
			DATASETCONFIGS
			 
			=
			 
			
			[
			
    
			# imageclas
			
    
			

	
			FastAIDataset
			(
			
			"
			CUB_200_2011
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			0c685df5597a8b24909f6a7c9db6d11e008733779a671760afef78feb49bf081
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			1GiB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			bedroom
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			7c95250ccb177c582f602c08f239c71f7a70512729d2e078925261cf5e349f5d
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			4.25GiB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			caltech_101
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			af6ece2f339791ca20f855943d8b55dd60892c0a25105fcd631ee3d6430f9926
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			126MiB
			"
			,
			 
			
			subpath
			 
			=
			 
			
			"
			101_ObjectCategories
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			cifar10
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			637c5814e11aefcb6ee76d5f59c67ddc8de7f5b5077502a195b0833d1e3e4441
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			cifar100
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			085ac613ceb0b3659c8072143ae553d5dd146b3c4206c3672a56ed02d0e77d28
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			food-101
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			abc3d6b03a9886fdea6d2a124cf88e22a99dfdb03085b2478be97de3f8e4679f
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			5.3GB
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			food-101
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagenette-160
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			1bd650bc16884ca88e4f0f537ed8569b1f8d7ae865d37eba8ecdd87d9cd9dcfa
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			1.45GiB
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagenette
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagenette-320
			"
			,
			 
			
			"
			imageclas
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagenette
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagenette
			"
			,
			 
			
			"
			imageclas
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagenette
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagenette2-160
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			64d0c4859f35a461889e0147755a999a48b49bf38a7e0f9bd27003f10db02fe5
			"
			,
			
                  
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagenette
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagenette2-320
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			569b4497c98db6dd29f335d1f109cf315fe127053cedf69010d047f0188e158c
			"
			,
			
                  
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagenette
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagenette2
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			6cbfac238434d89fe99e651496f0812ebc7a10fa62bd42d6874042bf01de4efd
			"
			,
			
                  
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagenette
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewang-160
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			a0d360f9d8159055b3bf2b8926a51d19b2f1ff98a1eef6034e4b891c59ca3f1a
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			182MiB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewang-320
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			fd53301c335aa46f0f4add68dd471cd0b8b66412382cc36f5f510d0a03fb4d9d
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			639MiB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewang
			"
			,
			 
			
			"
			imageclas
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewoof-160
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			a0d360f9d8159055b3bf2b8926a51d19b2f1ff98a1eef6034e4b891c59ca3f1a
			"
			,
			
                  
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagewoof
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewoof-320
			"
			,
			 
			
			"
			imageclas
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagewoof
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewoof
			"
			,
			 
			
			"
			imageclas
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagewoof
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewoof2-160
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			b5ffa16037e07f60882434f55b7814a3d44483f2a484129f251604bc0d0f8172
			"
			,
			
                  
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagewoof
			"
			]
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewoof2-320
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			7db6120fdb9ae079e26346f89e7b00d7f184f8137791609b97fd0405d3f92305
			"
			,
			
                  
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagewoof
			"
			]
			,
			 
			
			size
			 
			=
			 
			
			"
			313MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imagewoof2
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			de3f58c4ea3e042cf3f8365fbc699288cfe1d8c151059040d181c221bd5a55b8
			"
			,
			
                  
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			imagewoof
			"
			]
			,
			 
			
			size
			 
			=
			 
			
			"
			1.25GiB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			mnist_png
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			9e18edaa3a08b065d8f80a019ca04329e6d9b3e391363414a9bd1ada30563672
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			mnist_var_size_tiny
			"
			,
			 
			
			"
			imageclas
			"
			,
			
                  
			
			"
			8a0f6ca04c2d31810dc08e739c7fa9b612e236383f70dd9fc6e5a62e672e2283
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			oxford-102-flowers
			"
			,
			 
			
			"
			imageclas
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			oxford-iiit-pet
			"
			,
			 
			
			"
			imageclas
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			stanford-cars
			"
			,
			 
			
			"
			imageclas
			"
			)
			,
			

			
    
			# nlp
			
    
			

	
			FastAIDataset
			(
			
			"
			ag_news_csv
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			9a8c300eabb45750237fcc669f61cb8a3448f3ef6f6098e1ce340e444f6872be
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			11MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			amazon_review_full_csv
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			4af62eeee139d0142e0747340b68646d23483d9475c33ea0641ee9175b423443
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			600MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			amazon_review_polarity_csv
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			d2a3ee7a214497a5d1b8eaed7c8d7ba2737de00ada3b0ec46243983efa100361
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			600MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			dbpedia_csv
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			42db5221ddedddb673a4cabcc5f3a7d869714c878bcfe4ba94b29d14aa38e417
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			65MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			giga-fren
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			11c97af99471fe641f210d8b86ccccf3b298b9199853987ee53892d709d7ca6b
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			2.4GB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imdb
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			d501018afa17aee9fa1ebe8ac29859a5609980e13dc6e611aa21567cc357351f
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			140MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			sogou_news_csv
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			6b77fc935561d339b82aa552d7e31ea59eff492a494920579b3ce70604efb5c2
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			360MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			wikitext-103
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			27b89e94d98a9f9db74588a2e75b04378ee21569ce55d329d3e73e27d0952551
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			181MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			wikitext-2
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			4e39df0e84453ae2f3d34333de2a9d8e57560a7a6e621f13e11dc21241320074
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			4MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			yahoo_answers_csv
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			2d4277855faf8b35259009425fa8f7fe1888b5644b47165508942d000f4c96ae
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			305MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			yelp_review_full_csv
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			56006b0a17a370f1e366504b1f2c3e3754e4a3dda17d3e718a885c552869a559
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			187MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			yelp_review_polarity_csv
			"
			,
			 
			
			"
			nlp
			"
			,
			
                  
			
			"
			528f22e286cad085948acbc3bea7e58188416546b0e364d0ae4ca0ce666abe35
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			158MB
			"
			)
			,
			

			
    
			# imagelocal
			
    
			

	
			FastAIDataset
			(
			
			"
			biwi_head_pose
			"
			,
			 
			
			"
			imagelocal
			"
			,
			
                  
			
			"
			9cfefd53ed85f824c5908bc6eb21fc719583eec57a7df1d8141d3156645693cf
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			430MiB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			camvid
			"
			,
			 
			
			"
			imagelocal
			"
			,
			
                  
			
			"
			11db05fc3ee727fb17de7499380b20258a41beeb1002a2aee2c2244a472a4a45
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			571MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			pascal-voc
			"
			,
			 
			
			"
			imagelocal
			"
			,
			
                  
			
			"
			10fc13a659da20fdd8302dd394d88ca7e4e60e69fd8a5212c3e3357964a58215
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			4.3GB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			pascal_2007
			"
			,
			 
			
			"
			imagelocal
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			pascal_2012
			"
			,
			 
			
			"
			imagelocal
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			siim_small
			"
			,
			 
			
			"
			imagelocal
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			skin-lesion
			"
			,
			 
			
			"
			imagelocal
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			tcga-small
			"
			,
			 
			
			"
			imagelocal
			"
			)
			,
			

			
    
			# sample
			
    
			

	
			FastAIDataset
			(
			
			"
			adult_sample
			"
			,
			 
			
			"
			sample
			"
			,
			
                  
			
			"
			47ecd1848abc976643ee82d8788b712e3006d629bbc7554efa1077a91579e99e
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			3.8MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			biwi_sample
			"
			,
			 
			
			"
			sample
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			camvid_tiny
			"
			,
			 
			
			"
			sample
			"
			,
			
                  
			
			"
			cd42a9bdd8ad3e0ce87179749beae05b4beb1ae6ab665841180b1d8022fc230b
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			dogscats
			"
			,
			 
			
			"
			sample
			"
			,
			
                  
			
			"
			b79c0a5e4aa9ba7a0b83abbf61908c61e15bed0e5b236e86a0c4a080c8f70d7c
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			800MiB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			human_numbers
			"
			,
			 
			
			"
			sample
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			imdb_sample
			"
			,
			 
			
			"
			sample
			"
			,
			
                  
			
			"
			8e776d995296136b3f9a3cf001796d886cb0b60e86877ce71c7abbdc3c247341
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			4KB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			mnist_sample
			"
			,
			 
			
			"
			sample
			"
			,
			
                  
			
			"
			b373a14f282298aeba0f7dd56b7cdb6c2401063d4f118c39c54982907760bd38
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			3MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			mnist_tiny
			"
			,
			 
			
			"
			sample
			"
			,
			
                  
			
			"
			0d1fedf86243931aa3fc065d2cf4ffab339a972958d8594ae993ee32bd8e15b9
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			300KB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			movie_lens_sample
			"
			,
			 
			
			"
			sample
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			planet_sample
			"
			,
			 
			
			"
			sample
			"
			,
			
                  
			
			"
			f2509212bb2dcdc147423b164564f2e63cae1d1db0b504166e5b92cfbcbb3b4c
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			14.8MB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			planet_tiny
			"
			,
			 
			
			"
			sample
			"
			,
			
                  
			
			"
			41a5fdd82db1c9fb2cff17e1a1270102414a25a34b21b770f953d28483961edb
			"
			,
			
                  
			
			size
			 
			=
			 
			
			"
			1MB
			"
			)
			,
			

			
    
			# coco
			
    
			

	
			FastAIDataset
			(
			
			"
			coco_sample
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			"
			56960c0ac09ff35cd8588823d37e1ed0954cb88b8bfbd214a7763e72f982911c
			"
			,
			 
			
			size
			=
			
			"
			3GB
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			train2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-train2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			val2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-val2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			test2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-test2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			unlabeled2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-unlabeled2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			image_info_test2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-image_info_test2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			image_info_unlabeled2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-image_info_unlabeled2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			annotations_trainval2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-annotations_trainval2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			stuff_annotations_trainval2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-stuff_annotations_trainval2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			
    
			

	
			FastAIDataset
			(
			
			"
			panoptic_annotations_trainval2017
			"
			,
			 
			
			"
			coco
			"
			,
			 
			
			datadepname
			=
			
			"
			coco-panoptic_annotations_trainval2017
			"
			,
			 
			
			extension
			=
			
			"
			zip
			"
			)
			,
			

			
    
			# timeseries
			
    
			

	
			TSClassificationDataset
			(
			
			"
			ECG5000
			"
			,
			 
			
			"
			41f6de20ac895e9ce31753860995518951f1ed42a405d0e51c909d27e3b3c5a4
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			ECG5000
			"
			]
			 
			,
			
			datadepname
			=
			
			"
			ecg5000
			"
			,
			 
			
			size
			=
			
			"
			10MB
			"
			 
			)
			,
			
    
			

	
			TSClassificationDataset
			(
			
			"
			AtrialFibrillation
			"
			,
			 
			
			"
			218abad67d58190a6daa1a27f4bd58ace6e18f80fb59fb2c7385f0d2d4b411a2
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			AtrialFibrillation
			"
			]
			,
			 
			
			datadepname
			 
			=
			 
			
			"
			atrial
			"
			,
			 
			
			size
			 
			=
			 
			
			"
			226KB
			"
			)
			,
			
    
			

	
			TSClassificationDataset
			(
			
			"
			NATOPS
			"
			,
			 
			
			"
			57a8debeedadad7764bfa9c87b4300bd64a999ef95a98a6ee07a830c41de4aa1
			"
			,
			 
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			NATOPS
			"
			]
			,
			 
			
			datadepname
			 
			=
			 
			
			"
			natops
			"
			,
			 
			
			size
			 
			=
			 
			
			"
			5.1MB
			"
			)
			,
			

			
    
			# monash regression datasets
			
    
			

	
			MonashRegressionDataset
			(
			
			"
			AppliancesEnergy
			"
			,
			 
			3902637
			,
			 
			
			[
			
			"
			bbc65fcfa5c01655bb0ec7d558335d44b9c81979d7246f485bbc95a9759a5bff
			"
			,
			 
			
			"
			0e73676156bdce593059cd03785db9fd5616c1620ba87893b0f0903ef80f2248
			"
			]
			,
			
    
			
			description
			 
			=
			 
			

	
			DESCRIPTIONS
			[
			
			"
			AppliancesEnergy
			"
			]
			,
			 
			
			datadepname
			=
			
			"
			appliances_energy
			"
			,
			 
			
			size
			 
			=
			 
			
			"
			15MB
			"
			)
			,
			

			]
			

			

			
			const
			
			 

	
			DATASETS
			 
			=
			 
			
			[
			
			
			d
			.
			
			datadepname
			 
			for
			
			 
			d
			 
			in
			 

	
			DATASETCONFIGS
			]
			

			
			const
			
			 

	
			DATASETS_IMAGECLASSIFICATION
			 
			=
			 
			
			vcat
			(
			
    
			
			[
			
			
			d
			.
			
			datadepname
			 
			for
			
			
			 
			d
			 
			in
			 

	
			DATASETCONFIGS
			 
			if
			 
			(
			
			(
			
			
			typeof
			(
			d
			)
			 
			==
			 

	
			FastAIDataset
			)
			 
			&&
			
			  
			
			d
			.
			
			subfolder
			 
			==
			 
			
			"
			imageclas
			"
			)
			]
			,
			
    
			
			[
			
			"
			mnist_sample
			"
			,
			 
			
			"
			mnist_tiny
			"
			,
			 
			
			"
			dogscats
			"
			]
			,
			

			

			)
			

			

			

			
			function
			 
			
			
			DataDeps
			.
			
			DataDep
			(
			
			d
			::

	
			FastAIDataset
			)
			
			
    
			
			return
			 
			
			DataDep
			(
			
			"
			fastai-
			$
			(
			
			d
			.
			
			datadepname
			)
			"
			,
			
                   
			
			"""
			

			                   
			"
			$
			(
			
			d
			.
			
			name
			)
			" from the fastai dataset repository (https://course.fast.ai/datasets)

			

			                   
			$
			(
			
			d
			.
			
			description
			)
			

			

			                   
			 Download size: 
			$
			(
			
			d
			.
			
			size
			)
			

			                   
			 
			"""
			,
			
                    
			
			"
			$
			(

	
			ROOT_URL_FastAI
			)
			$
			(
			
			d
			.
			
			subfolder
			)
			/
			$
			(
			
			d
			.
			
			name
			)
			.
			$
			(
			
			d
			.
			
			extension
			)
			"
			,
			
                    
			
			d
			.
			
			checksum
			,
			
                    
			
			post_fetch_method
			=
			
			function
			 
			
			(
			f
			)
			
			
                        
			
			
			DataDeps
			.
			
			unpack
			(
			f
			)
			
                        
			
			extracted
			 
			=
			 
			
			
			readdir
			(
			
			pwd
			(
			)
			)
			[
			1
			]
			
                        
			
			temp
			 
			=
			 
			
			mktempdir
			(
			)
			
                        
			
			mv
			(
			extracted
			,
			 
			temp
			,
			 
			
			force
			=
			true
			)
			
                        
			
			mv
			(
			temp
			,
			 
			
			pwd
			(
			)
			,
			 
			
			force
			=
			true
			)
			
                    
			end
			,
			
    
			)
			

			end
			

			

			
			function
			 
			
			
			DataDeps
			.
			
			DataDep
			(
			
			d
			::

	
			TSClassificationDataset
			)
			
			
    
			
			return
			 
			
			DataDep
			(
			
        
			
			"
			fastai-
			$
			(
			
			d
			.
			
			datadepname
			)
			"
			,
			
        
			
			"""
			

			        
			"
			$
			(
			
			d
			.
			
			name
			)
			" from the UEA and UCR time reries classification repository (http://timeseriesclassification.com/)

			

			        
			$
			(
			
			d
			.
			
			description
			)
			

			

			        
			Download size: 
			$
			(
			
			d
			.
			
			size
			)
			

			        
			"""
			,
			
        
			
			"
			$
			(

	
			ROOT_URL_TSClassification
			)
			/
			$
			(
			
			d
			.
			
			name
			)
			.
			$
			(
			
			d
			.
			
			extension
			)
			"
			,
			
        
			
			d
			.
			
			checksum
			,
			
        
			
			post_fetch_method
			=
			
			function
			 
			
			(
			f
			)
			
			
            
			
			
			DataDeps
			.
			
			unpack
			(
			f
			)
			
        
			end
			,
			
    
			)
			

			end
			

			

			
			function
			 
			
			
			DataDeps
			.
			
			DataDep
			(
			
			d
			::

	
			MonashRegressionDataset
			)
			
			
    
			
			remote_paths
			 
			=
			 
			
			[
			
			 
			
			"
			https://zenodo.org/record/
			$
			(
			
			d
			.
			
			dset_id
			)
			/files/
			$
			(
			
			d
			.
			
			name
			)
			_
			$
			split
			.ts
			"
			 
			for
			
			 
			split
			 
			in
			 
			
			d
			.
			
			splits
			]
			
    
			
			return
			 
			
			DataDep
			(
			
        
			
			"
			fastai-
			$
			(
			
			d
			.
			
			datadepname
			)
			"
			,
			
        
			
			"""
			

			        
			"
			$
			(
			
			d
			.
			
			name
			)
			" from the Monash, UEA & UCR Time Series Extrinsic Regression Repository (http://tseregression.org)

			        
			$
			(
			
			d
			.
			
			description
			)
			

			        
			Download size: 
			$
			(
			
			d
			.
			
			size
			)
			

			        
			"""
			,
			
        
			remote_paths
			,
			
        
			
			d
			.
			
			checksum
			
    
			)
			

			end
			

			

			
			function
			 
			

	
			initdatadeps
			(
			)
			
			
    
			
			for
			
			 
			d
			 
			in
			 

	
			DATASETCONFIGS
			
			
        
			
			
			DataDeps
			.
			
			register
			(
			
			DataDep
			(
			d
			)
			)
			
    
			end
			

			end