FastTabular
module
FastTabular
using
FastAI
using
FastAI
:
# blocks
Block
,
WrapperBlock
,
AbstractBlock
,
OneHotTensor
,
OneHotTensorMulti
,
Label
,
LabelMulti
,
wrapped
,
Continuous
,
getencodings
,
getblocks
,
encodetarget
,
encodeinput
,
# encodings
Encoding
,
StatefulEncoding
,
OneHot
,
# visualization
ShowText
,
# other
Context
,
Training
,
Validation
import
FastAI
:
Datasets
using
FastAI
.
Datasets
# for tests
using
FastAI
:
testencoding
# extending
import
FastAI
:
Datasets
,
blockmodel
,
blockbackbone
,
blocklossfn
,
encode
,
decode
,
checkblock
,
encodedblock
,
decodedblock
,
showblock!
,
mockblock
,
setup
import
CSV
import
DataAugmentation
import
DataFrames
:
DataFrame
,
nrow
import
MLUtils
:
MLUtils
,
eachobs
,
getobs
,
numobs
import
Flux
import
Flux
:
Embedding
,
Chain
,
Dropout
,
Dense
,
Parallel
,
BatchNorm
import
PrettyTables
import
ShowCases
:
ShowCase
import
Tables
import
Statistics
using
FilePathsBase
using
InlineTest
include
(
"
container.jl
"
)
# Blocks
include
(
"
blocks/tablerow.jl
"
)
# Encodings
include
(
"
encodings/tabularpreprocessing.jl
"
)
include
(
"
models.jl
"
)
const
_tasks
=
Dict
{
String
,
Any
}
(
)
include
(
"
tasks/classification.jl
"
)
include
(
"
tasks/regression.jl
"
)
include
(
"
recipes.jl
"
)
function
__init__
(
)
FastAI
.
Registries
.
registerrecipes
(
@
__MODULE__
,
RECIPES
)
foreach
(
values
(
_tasks
)
)
do
t
if
!
haskey
(
learningtasks
(
)
,
t
.
id
)
push!
(
learningtasks
(
)
,
t
)
end
end
end
export
TableRow
,
TabularPreprocessing
,
TabularClassificationSingle
,
TabularRegression
,
TableDataset
end