UNetDynamic
	
function defined in module 
	FastVision.Models
			UNetDynamic(backbone, inputsize, k_out[; kwargs...])
			Create a U-Net model from convolutional 
			backbone architecture. After every downsampling layer (i.e. pooling or strided convolution), a skip connection and an upsampling block are inserted, resulting in a convolutional network with the same spatial output dimensions as its input. Outputs an array with 
			k_out channels.
			
			fdownscale = 0: Number of upsampling steps to leave out. By default there will be one upsampling step for every downsampling step in 
			backbone. Hence if the input spatial size is 
			(h, w), the output size will be 
			(h/2^fdownscale, w/2^fdownscale), i.e. to get outputs at half the resolution, set 
			fdownscale = 1.
			
			kwargs...: Other keyword arguments are passed through to 
			upsample.
			
			
			
			using
			
			 
	
			FastAI
			,
			
			 
			Metalhead
			
			
			
			backbone
			 
			=
			 
			
			
			
			
			
			Metalhead
			.
			
			ResNet50
			(
			
			pretrain
			=
			true
			)
			.
			
			layers
			[
			1
			]
			[
			
			1
			:
			
			end
			-
			1
			]
			
			
			unet
			 
			=
			 
			
			UNetDynamic
			(
			backbone
			,
			 
			
			(
			256
			,
			 
			256
			,
			 
			3
			,
			 
			1
			)
			
			;
			 
			
			k_out
			 
			=
			 
			10
			)
			
			
			
			
	
			Flux
			.
			
	
			outputsize
			(
			unet
			,
			 
			
			(
			256
			,
			 
			256
			,
			 
			3
			,
			 
			1
			)
			)
			 
			==
			 
			
			(
			256
			,
			 
			256
			,
			 
			10
			,
			 
			1
			)
			
			
			
			unet
			 
			=
			 
			
			UNetDynamic
			(
			backbone
			,
			 
			
			(
			256
			,
			 
			256
			,
			 
			3
			,
			 
			1
			)
			
			;
			 
			
			fdownscalk_out
			 
			=
			 
			10
			)
			
			
			
			
	
			Flux
			.
			
	
			outputsize
			(
			unet
			,
			 
			
			(
			256
			,
			 
			256
			,
			 
			3
			,
			 
			1
			)
			)
			 
			==
			 
			
			(
			256
			,
			 
			256
			,
			 
			10
			,
			 
			1
			)There is
			1
			method for FastVision.Models.UNetDynamic:
		
The following pages link back here: