UNetDynamic
function
defined in module
FastVision.Models
UNetDynamic(backbone, inputsize, k_out[; kwargs...])
Create a U-Net model from convolutional
backbone
architecture. After every downsampling layer (i.e. pooling or strided convolution), a skip connection and an upsampling block are inserted, resulting in a convolutional network with the same spatial output dimensions as its input. Outputs an array with
k_out
channels.
fdownscale = 0
: Number of upsampling steps to leave out. By default there will be one upsampling step for every downsampling step in
backbone
. Hence if the input spatial size is
(h, w)
, the output size will be
(h/2^fdownscale, w/2^fdownscale)
, i.e. to get outputs at half the resolution, set
fdownscale = 1
.
kwargs...
: Other keyword arguments are passed through to
upsample
.
using
FastAI
,
Metalhead
backbone
=
Metalhead
.
ResNet50
(
pretrain
=
true
)
.
layers
[
1
]
[
1
:
end
-
1
]
unet
=
UNetDynamic
(
backbone
,
(
256
,
256
,
3
,
1
)
;
k_out
=
10
)
Flux
.
outputsize
(
unet
,
(
256
,
256
,
3
,
1
)
)
==
(
256
,
256
,
10
,
1
)
unet
=
UNetDynamic
(
backbone
,
(
256
,
256
,
3
,
1
)
;
fdownscalk_out
=
10
)
Flux
.
outputsize
(
unet
,
(
256
,
256
,
3
,
1
)
)
==
(
256
,
256
,
10
,
1
)
There is
1
method for FastVision.Models.UNetDynamic
:
The following pages link back here: