UNetDynamic
function defined in module
FastVision.Models
UNetDynamic(backbone, inputsize, k_out[; kwargs...])
Create a U-Net model from convolutional
backbone architecture. After every downsampling layer (i.e. pooling or strided convolution), a skip connection and an upsampling block are inserted, resulting in a convolutional network with the same spatial output dimensions as its input. Outputs an array with
k_out channels.
fdownscale = 0: Number of upsampling steps to leave out. By default there will be one upsampling step for every downsampling step in
backbone. Hence if the input spatial size is
(h, w), the output size will be
(h/2^fdownscale, w/2^fdownscale), i.e. to get outputs at half the resolution, set
fdownscale = 1.
kwargs...: Other keyword arguments are passed through to
upsample.
using
FastAI
,
Metalhead
backbone
=
Metalhead
.
ResNet50
(
pretrain
=
true
)
.
layers
[
1
]
[
1
:
end
-
1
]
unet
=
UNetDynamic
(
backbone
,
(
256
,
256
,
3
,
1
)
;
k_out
=
10
)
Flux
.
outputsize
(
unet
,
(
256
,
256
,
3
,
1
)
)
==
(
256
,
256
,
10
,
1
)
unet
=
UNetDynamic
(
backbone
,
(
256
,
256
,
3
,
1
)
;
fdownscalk_out
=
10
)
Flux
.
outputsize
(
unet
,
(
256
,
256
,
3
,
1
)
)
==
(
256
,
256
,
10
,
1
)There is
1
method for FastVision.Models.UNetDynamic:
The following pages link back here: