ConvTranspose
	
struct defined in module 
	Flux
			ConvTranspose(filter, in => out, σ=identity; stride=1, pad=0, dilation=1, [bias, init])
			Standard convolutional transpose layer. 
			filter is a tuple of integers specifying the size of the convolutional kernel, while 
			in and 
			out specify the number of input and output channels.
			Note that 
			pad=SamePad() here tries to ensure 
			size(output,d) == size(x,d) * stride.
			Parameters are controlled by additional keywords, with defaults 
			init=glorot_uniform and 
			bias=true.
			See also 
	
			
			Conv for more detailed description of keywords.
			julia> xs = rand(Float32, 100, 100, 3, 50);  # a batch of 50 RGB images
julia> layer = ConvTranspose((5,5), 3 => 7, relu)
ConvTranspose((5, 5), 3 => 7, relu)  # 532 parameters
julia> layer(xs) |> size
(104, 104, 7, 50)
julia> ConvTranspose((5,5), 3 => 7, stride=2)(xs) |> size
(203, 203, 7, 50)
julia> ConvTranspose((5,5), 3 => 7, stride=3, pad=SamePad())(xs) |> size
(300, 300, 7, 50)
			ConvTranspose(weight::AbstractArray, [bias, activation; stride, pad, dilation, groups])
			Constructs a ConvTranspose layer with the given weight and bias. Accepts the same keywords and has the same defaults as [
			ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ; ...)]( ConvTranspose).
			julia> weight = rand(3, 4, 5);
julia> bias = zeros(4);
julia> layer = ConvTranspose(weight, bias, sigmoid)
ConvTranspose((3,), 5 => 4, σ)  # 64 parameters
julia> layer(randn(100, 5, 64)) |> size  # transposed convolution will increase the dimension size (upsampling)
(102, 4, 64)
julia> Flux.params(layer) |> length
2
There are
			3
			methods for Flux.ConvTranspose:
		
The following pages link back here: