CrossCor
	
struct defined in module 
	Flux
			CrossCor(filter, in => out, σ=identity; stride=1, pad=0, dilation=1, [bias, init])
			Standard cross correlation layer. 
			filter is a tuple of integers specifying the size of the convolutional kernel; 
			in and 
			out specify the number of input and output channels.
			Parameters are controlled by additional keywords, with defaults 
			init=glorot_uniform and 
			bias=true.
			See also 
	
			
			Conv for more detailed description of keywords.
			julia> xs = rand(Float32, 100, 100, 3, 50);  # a batch of 50 RGB images
julia> layer = CrossCor((5,5), 3 => 6, relu; bias=false)
CrossCor((5, 5), 3 => 6, relu, bias=false)  # 450 parameters
julia> layer(xs) |> size
(96, 96, 6, 50)
julia> CrossCor((5,5), 3 => 7, stride=3, pad=(2,0))(xs) |> size
(34, 32, 7, 50)
			CrossCor(weight::AbstractArray, [bias, activation; stride, pad, dilation])
			Constructs a CrossCor layer with the given weight and bias. Accepts the same keywords and has the same defaults as [
			CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ; ...)]( CrossCor).
			julia> weight = rand(3, 4, 5);
julia> bias = zeros(5);
julia> layer = CrossCor(weight, bias, relu)
CrossCor((3,), 4 => 5, relu)  # 65 parameters
julia> layer(randn(100, 4, 64)) |> size
(98, 5, 64)
There are
			3
			methods for Flux.CrossCor:
		
The following pages link back here: