InstanceNorm
	
struct defined in module 
	Flux
			InstanceNorm(channels::Integer, λ=identity;
             initβ=zeros32, initγ=ones32,
             affine=false, track_stats=false,
             ϵ=1f-5, momentum=0.1f0)
			
			Instance Normalization
		
 layer. 
			channels should be the size of the channel dimension in your data (see below).
			Given an array with 
			N > 2 dimensions, call the 
			N-1th the channel dimension. For 
			WHCN images it's the usual channel dimension.
			
			InstanceNorm computes the mean and variance for each 
			D_1×...×D_{N-2}×1×1 input slice and normalises the input accordingly.
			If 
			affine=true, it also applies  a shift and a rescale to the input through to learnable per-channel bias 
			β and scale 
			γ parameters.
			If 
			track_stats=true, accumulates mean and var statistics in training phase that will be used to renormalize the input in test phase.
			
			Warning: the defaults for 
			affine and 
			track_stats used to be 
			true in previous Flux versions (< v0.12).
			julia> using Statistics
julia> xs = rand(3, 3, 3, 2);  # a batch of 2 images, each having 3 channels
julia> m = InstanceNorm(3);
julia> y = m(xs);
julia> isapprox(std(y, dims=1:2), ones(1, 1, 3, 2), atol=0.2) && std(y, dims=1:2) != std(xs, dims=1:2)
true
There are
			2
			methods for Flux.InstanceNorm:
		
The following pages link back here:
Flux.jl , layers/normalise.jl , layers/show.jl , outputsize.jl