SamePad
	
struct defined in module 
	Flux
			SamePad()
			Passed as an option to convolutional layers (and friends), this causes the padding to be chosen such that the input and output sizes agree (on the first 
			N dimensions, the kernel or window) when 
			stride==1. When 
			stride≠1, the output size equals 
			ceil(input_size/stride).
			julia> xs = rand(Float32, 100, 100, 3, 50);  # a batch of images
julia> layer = Conv((2,2), 3 => 7, pad=SamePad())
Conv((2, 2), 3 => 7, pad=(1, 0, 1, 0))  # 91 parameters
julia> layer(xs) |> size  # notice how the dimensions stay the same with this padding
(100, 100, 7, 50)
julia> layer2 = Conv((2,2), 3 => 7)
Conv((2, 2), 3 => 7)  # 91 parameters
julia> layer2(xs) |> size  # the output dimension changes as the padding was not "same"
(99, 99, 7, 50)
julia> layer3 = Conv((5, 5), 3 => 7, stride=2, pad=SamePad())
Conv((5, 5), 3 => 7, pad=2, stride=2)  # 532 parameters
julia> layer3(xs) |> size  # output size = `ceil(input_size/stride)` = 50
(50, 50, 7, 50)
There is
			1
			method for Flux.SamePad:
		
The following pages link back here: