.Fluxsparse_init
	
function defined in module 
	Flux
			sparse_init([rng = default_rng_value()], rows, cols; sparsity, std = 0.01) -> Array
sparse_init([rng]; kw...) -> Function
			Return a 
			Matrix{Float32} of size 
			rows, cols where each column contains a fixed fraction of zero elements given by 
			sparsity. Non-zero elements are normally distributed with a mean of zero and standard deviation 
			std.
This method is described in [1].
			julia> count(iszero, Flux.sparse_init(10, 10, sparsity=1/5))
20
julia> sum(0 .== Flux.sparse_init(10, 11, sparsity=0.9), dims=1)
1×11 Matrix{Int64}:
 9  9  9  9  9  9  9  9  9  9  9
julia> Dense(3 => 10, tanh; init=Flux.sparse_init(sparsity=0.5))
Dense(3 => 10, tanh)  # 40 parameters
julia> count(iszero, ans.weight, dims=1)
1×3 Matrix{Int64}:
 5  5  5
[1] Martens, J, "Deep learning via Hessian-free optimization" Proceedings of the 27th International Conference on International Conference on Machine Learning. 2010.
There are
			3
			methods for Flux.sparse_init:
		
The following page links back here: