binary_focal_loss
function
defined in module
Flux.Losses
binary_focal_loss(ŷ, y; agg=mean, gamma=2, eps=eps(eltype(ŷ)))
Return the binary_focal_loss The input, 'ŷ', is expected to be normalized (i.e. [softmax]( Softmax) output).
For
gamma = 0
, the loss is mathematically equivalent to
Losses.binarycrossentropy
.
See also:
Losses.focal_loss
for multi-class setting
julia> y = [0 1 0
1 0 1]
2×3 Matrix{Int64}:
0 1 0
1 0 1
julia> ŷ = [0.268941 0.5 0.268941
0.731059 0.5 0.731059]
2×3 Matrix{Float64}:
0.268941 0.5 0.268941
0.731059 0.5 0.731059
julia> Flux.binary_focal_loss(ŷ, y) ≈ 0.0728675615927385
true
There is
1
method for Flux.Losses.binary_focal_loss
:
The following pages link back here: