squared_hinge_loss
	
function defined in module 
	Flux.Losses
			squared_hinge_loss(ŷ, y)
			Return the squared hinge_loss loss given the prediction 
			ŷ and true labels 
			y (containing 1 or -1); calculated as
			sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)
			Usually used with classifiers like Support Vector Machines. See also: 
			
			hinge_loss
		
			julia> y_true = [1, -1, 1, 1];
julia> y_pred = [0.1, 0.3, 1, 1.5];
julia> Flux.squared_hinge_loss(y_pred, y_true)
0.625
julia> Flux.squared_hinge_loss(y_pred[1], y_true[1]) != 0
true
julia> Flux.squared_hinge_loss(y_pred[end], y_true[end]) == 0
true
julia> Flux.squared_hinge_loss(y_pred[2], y_true[2]) != 0
true
There is
			1
			method for Flux.Losses.squared_hinge_loss:
		
The following pages link back here: