splitobs
	
function defined in module 
	MLUtils
			splitobs(n::Int; at) -> Tuple
			Compute the indices for two or more disjoint subsets of the range 
			1:n with splits given by 
			at.
			
			
			
			julia
			>
			 
			
			splitobs
			(
			100
			,
			 
			
			at
			=
			0.7
			)
			
			
			(
			
			1
			:
			70
			,
			 
			
			71
			:
			100
			)
			
			
			
			julia
			>
			 
			
			splitobs
			(
			100
			,
			 
			
			at
			=
			
			(
			0.1
			,
			 
			0.4
			)
			)
			
			
			(
			
			1
			:
			10
			,
			 
			
			11
			:
			50
			,
			 
			
			51
			:
			100
			)
			splitobs(data; at, shuffle=false) -> Tuple
			Split the 
			data into multiple subsets proportional to the value(s) of 
			at.
			If 
			shuffle=true, randomly permute the observations before splitting.
			Supports any datatype implementing the 
	
			
			numobs and 
	
			
			getobs interfaces.
			
			
			# A 70%-30% split
			
			
			
			train
			,
			 
			test
			 
			=
			 
			
			splitobs
			(
			X
			,
			 
			
			at
			=
			0.7
			)
			
			
			# A 50%-30%-20% split
			
			
			
			train
			,
			 
			val
			,
			 
			test
			 
			=
			 
			
			splitobs
			(
			X
			,
			 
			
			at
			=
			
			(
			0.5
			,
			 
			0.3
			)
			)
			
			
			# A 70%-30% split with multiple arrays and shuffling
			
			
			
			train
			,
			 
			test
			 
			=
			 
			
			splitobs
			(
			
			(
			X
			,
			 
			y
			)
			,
			 
			
			at
			=
			0.7
			,
			 
			
			shuffle
			=
			true
			)
			
			
			
			Xtrain
			,
			 
			Ytrain
			 
			=
			 
			trainThere are
			2
			methods for MLUtils.splitobs:
		
The following pages link back here:
FastAI.jl , learner.jl , tasks/taskdata.jl , MLUtils.jl , splitobs.jl