# Model-Building Basics

## Taking Gradients

Flux's core feature is taking gradients of Julia code. The `gradient`

function takes another Julia function `f`

and a set of arguments, and returns the gradient with respect to each argument. (It's a good idea to try pasting these examples in the Julia terminal.)

```
julia> using Flux
julia> f(x) = 3x^2 + 2x + 1;
julia> df(x) = gradient(f, x)[1]; # df/dx = 6x + 2
julia> df(2)
14
julia> d2f(x) = gradient(df, x)[1]; # d²f/dx² = 6
julia> d2f(2)
6
```

When a function has many parameters, we can get gradients of each one at the same time:

```
julia> f(x, y) = sum((x .- y).^2);
julia> gradient(f, [2, 1], [2, 0])
([0, 2], [0, -2])
```

But machine learning models can have *hundreds* of parameters! To handle this, Flux lets you work with collections of parameters, via `params`

. You can get the gradient of all parameters used in a program without explicitly passing them in.

```
julia> using Flux
julia> x = [2, 1];
julia> y = [2, 0];
julia> gs = gradient(params(x, y)) do
f(x, y)
end
Grads(...)
julia> gs[x]
2-element Array{Int64,1}:
0
2
julia> gs[y]
2-element Array{Int64,1}:
0
-2
```

Here, `gradient`

takes a zero-argument function; no arguments are necessary because the `params`

tell it what to differentiate.

This will come in really handy when dealing with big, complicated models. For now, though, let's start with something simple.

## Simple Models

Consider a simple linear regression, which tries to predict an output array `y`

from an input `x`

.

```
W = rand(2, 5)
b = rand(2)
predict(x) = W*x .+ b
function loss(x, y)
ŷ = predict(x)
sum((y .- ŷ).^2)
end
x, y = rand(5), rand(2) # Dummy data
loss(x, y) # ~ 3
```

To improve the prediction we can take the gradients of `W`

and `b`

with respect to the loss and perform gradient descent.

```
using Flux
gs = gradient(() -> loss(x, y), params(W, b))
```

Now that we have gradients, we can pull them out and update `W`

to train the model.

```
W̄ = gs[W]
W .-= 0.1 .* W̄
loss(x, y) # ~ 2.5
```

The loss has decreased a little, meaning that our prediction `x`

is closer to the target `y`

. If we have some data we can already try training the model.

All deep learning in Flux, however complex, is a simple generalisation of this example. Of course, models can *look* very different – they might have millions of parameters or complex control flow. Let's see how Flux handles more complex models.

## Building Layers

It's common to create more complex models than the linear regression above. For example, we might want to have two linear layers with a nonlinearity like sigmoid (`σ`

) in between them. In the above style we could write this as:

```
using Flux
W1 = rand(3, 5)
b1 = rand(3)
layer1(x) = W1 * x .+ b1
W2 = rand(2, 3)
b2 = rand(2)
layer2(x) = W2 * x .+ b2
model(x) = layer2(σ.(layer1(x)))
model(rand(5)) # => 2-element vector
```

This works but is fairly unwieldy, with a lot of repetition – especially as we add more layers. One way to factor this out is to create a function that returns linear layers.

```
function linear(in, out)
W = randn(out, in)
b = randn(out)
x -> W * x .+ b
end
linear1 = linear(5, 3) # we can access linear1.W etc
linear2 = linear(3, 2)
model(x) = linear2(σ.(linear1(x)))
model(rand(5)) # => 2-element vector
```

Another (equivalent) way is to create a struct that explicitly represents the affine layer.

```
struct Affine
W
b
end
Affine(in::Integer, out::Integer) =
Affine(randn(out, in), randn(out))
# Overload call, so the object can be used as a function
(m::Affine)(x) = m.W * x .+ m.b
a = Affine(10, 5)
a(rand(10)) # => 5-element vector
```

Congratulations! You just built the `Dense`

layer that comes with Flux. Flux has many interesting layers available, but they're all things you could have built yourself very easily.

(There is one small difference with `Dense`

– for convenience it also takes an activation function, like `Dense(10, 5, σ)`

.)

## Stacking It Up

It's pretty common to write models that look something like:

```
layer1 = Dense(10, 5, σ)
# ...
model(x) = layer3(layer2(layer1(x)))
```

For long chains, it might be a bit more intuitive to have a list of layers, like this:

```
using Flux
layers = [Dense(10, 5, σ), Dense(5, 2), softmax]
model(x) = foldl((x, m) -> m(x), layers, init = x)
model(rand(10)) # => 2-element vector
```

Handily, this is also provided for in Flux:

```
model2 = Chain(
Dense(10, 5, σ),
Dense(5, 2),
softmax)
model2(rand(10)) # => 2-element vector
```

This quickly starts to look like a high-level deep learning library; yet you can see how it falls out of simple abstractions, and we lose none of the power of Julia code.

A nice property of this approach is that because "models" are just functions (possibly with trainable parameters), you can also see this as simple function composition.

```
m = Dense(5, 2) ∘ Dense(10, 5, σ)
m(rand(10))
```

Likewise, `Chain`

will happily work with any Julia function.

```
m = Chain(x -> x^2, x -> x+1)
m(5) # => 26
```

## Layer helpers

Flux provides a set of helpers for custom layers, which you can enable by calling

`Flux.@functor Affine`

This enables a useful extra set of functionality for our `Affine`

layer, such as collecting its parameters or moving it to the GPU.

For some more helpful tricks, including parameter freezing, please checkout the advanced usage guide.

## Utility functions

Flux provides some utility functions to help you generate models in an automated fashion.

`outdims`

enables you to calculate the spatial output dimensions of layers like `Conv`

when applied to input images of a given size. Currently limited to the following layers:

`Chain`

`Dense`

`Conv`

`Diagonal`

`Maxout`

`ConvTranspose`

`DepthwiseConv`

`CrossCor`

`MaxPool`

`MeanPool`

`Flux.outdims`

— Function`outdims(c::Chain, isize)`

Calculate the output dimensions given the input dimensions, `isize`

.

```
m = Chain(Conv((3, 3), 3 => 16), Conv((3, 3), 16 => 32))
outdims(m, (10, 10)) == (6, 6)
```

`outdims(l::Dense, isize)`

Calculate the output dimensions given the input dimensions, `isize`

.

```
m = Dense(10, 5)
outdims(m, (5, 2)) == (5,)
outdims(m, (10,)) == (5,)
```

`outdims(l::Conv, isize::Tuple)`

Calculate the output dimensions given the input dimensions `isize`

. Batch size and channel size are ignored as per NNlib.jl.

```
m = Conv((3, 3), 3 => 16)
outdims(m, (10, 10)) == (8, 8)
outdims(m, (10, 10, 1, 3)) == (8, 8)
```