Models
Autoencoders
Graph Autoencoder
where $A$ denotes the adjacency matrix.
GeometricFlux.GAE — TypeGAE(enc[, σ])Graph autoencoder.
Arguments
enc: encoder. It can be any graph convolutional layer.
Encoder is specified by user and decoder will be InnerProductDecoder layer.
Reference: Variational Graph Auto-Encoders
Variational Graph Autoencoder
where $A$ denotes the adjacency matrix, $X$ denotes node features.
GeometricFlux.VGAE — TypeVGAE(enc[, σ])Variational graph autoencoder.
Arguments
enc: encoder. It can be any graph convolutional layer.
Encoder is specified by user and decoder will be InnerProductDecoder layer.
Reference: Variational Graph Auto-Encoders
Special Layers
Inner-product Decoder
where $Z$ denotes the input matrix from encoder.
GeometricFlux.InnerProductDecoder — TypeInnerProductDecoder(σ)Inner-product decoder layer.
Arguments
σ: activation function.
Reference: Variational Graph Auto-Encoders
Variational Encoder
GeometricFlux.VariationalEncoder — TypeVariationalEncoder(nn, h_dim, z_dim)Variational encoder layer.
Arguments
nn: neural network. It can be any graph convolutional layer.h_dim: dimension of hidden layer. This should fit the output dimension ofnn.z_dim: dimension of latent variable layer. This will be parametrized intoμandlogσ.
Encoder can be any graph convolutional layer.
Reference: Variational Graph Auto-Encoders