Models
Autoencoders
Graph Autoencoder
where $A$ denotes the adjacency matrix.
GeometricFlux.GAE
— TypeGAE(enc[, σ])
Graph autoencoder.
Arguments
enc
: encoder. It can be any graph convolutional layer.
Encoder is specified by user and decoder will be InnerProductDecoder
layer.
Reference: Variational Graph Auto-Encoders
Variational Graph Autoencoder
where $A$ denotes the adjacency matrix, $X$ denotes node features.
GeometricFlux.VGAE
— TypeVGAE(enc[, σ])
Variational graph autoencoder.
Arguments
enc
: encoder. It can be any graph convolutional layer.
Encoder is specified by user and decoder will be InnerProductDecoder
layer.
Reference: Variational Graph Auto-Encoders
Special Layers
Inner-product Decoder
where $Z$ denotes the input matrix from encoder.
GeometricFlux.InnerProductDecoder
— TypeInnerProductDecoder(σ)
Inner-product decoder layer.
Arguments
σ
: activation function.
Reference: Variational Graph Auto-Encoders
Variational Encoder
GeometricFlux.VariationalEncoder
— TypeVariationalEncoder(nn, h_dim, z_dim)
Variational encoder layer.
Arguments
nn
: neural network. It can be any graph convolutional layer.h_dim
: dimension of hidden layer. This should fit the output dimension ofnn
.z_dim
: dimension of latent variable layer. This will be parametrized intoμ
andlogσ
.
Encoder can be any graph convolutional layer.
Reference: Variational Graph Auto-Encoders