Hybrid CNN architectures
These models are hybrid CNN architectures that borrow certain ideas from vision transformer models.
The higher-level model constructors
Metalhead.ConvMixer — TypeConvMixer(config::Symbol; pretrain::Bool = false, inchannels::Integer = 3,
nclasses::Integer = 1000)Creates a ConvMixer model. (reference)
Arguments
config: the size of the model, either:base,:smallor:largepretrain: whether to load the pre-trained weights for ImageNetinchannels: number of input channelsnclasses: number of classes in the output
ConvMixer does not currently support pretrained weights.
See also Metalhead.convmixer.
Metalhead.ConvNeXt — TypeConvNeXt(config::Symbol; pretrain::Bool = true, inchannels::Integer = 3,
nclasses::Integer = 1000)Creates a ConvNeXt model. (reference)
Arguments
config: The size of the model, one oftiny,small,base,largeorxlarge.pretrain: set totrueto load pre-trained weights for ImageNetinchannels: number of input channelsnclasses: number of output classes
ConvNeXt does not currently support pretrained weights.
See also Metalhead.convnext.
The mid-level functions
Metalhead.convmixer — Functionconvmixer(planes::Integer, depth::Integer; kernel_size::Dims{2} = (9, 9),
patch_size::Dims{2} = (7, 7), activation = gelu,
inchannels::Integer = 3, nclasses::Integer = 1000)Creates a ConvMixer model. (reference)
Arguments
planes: number of planes in the output of each blockdepth: number of layerskernel_size: kernel size of the convolutional layerspatch_size: size of the patchesactivation: activation function used after the convolutional layersinchannels: number of input channelsnclasses: number of classes in the output
Metalhead.convnext — Functionconvnext(config::Symbol; stochastic_depth_prob = 0.0, layerscale_init = 1.0f-6,
inchannels::Integer = 3, nclasses::Integer = 1000)Creates a ConvNeXt model. (reference)
Arguments
config: The size of the model, one oftiny,small,base,largeorxlarge.stochastic_depth_prob: Stochastic depth probability.layerscale_init: Initial value forLayerScale(reference)inchannels: number of input channels.nclasses: number of output classes