Reference
The API reference of NNlib.
Activation Functions
Non-linearities that go between layers of your model. Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call σ.(xs), relu.(xs) and so on.
NNlib.celu — Functioncelu(x, α=1) = x ≥ 0 ? x : α * (exp(x/α) - 1)Activation function from "Continuously Differentiable Exponential Linear Units".
julia> lineplot(celu, -2, 2, height=7)
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠒⠉│ celu(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊⠉⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⣀⡤⠖⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⣀⠤⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⡧⠶⠭⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀⠤⠔⠒⠋⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⠤⠤⠤⠤⠔⠒⠒⠒⠊⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> celu(-10f0)
-0.9999546f0NNlib.elu — Functionelu(x, α=1) = x > 0 ? x : α * (exp(x) - 1)Exponential Linear Unit activation function. See "Fast and Accurate Deep Network Learning by Exponential Linear Units". You can also specify the coefficient explicitly, e.g. elu(x, 1).
julia> lineplot(elu, -2, 2, height=7)
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠒⠉│ elu(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊⠉⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⣀⡤⠖⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⣀⠤⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⡧⠶⠭⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀⠤⠔⠒⠋⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⠤⠤⠤⠤⠔⠒⠒⠒⠊⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> elu(-10f0)
-0.9999546f0
julia> elu(-10f0, 2)
-1.9999092f0NNlib.gelu — Functiongelu(x) = gelu_tanh(x)Activation function from "Gaussian Error Linear Units". See gelu_tanh.
NNlib.gelu_tanh — Functiongelu_tanh(x) = 0.5x * (1 + tanh(√(2/π) * (x + 0.044715x^3)))Activation function from "Gaussian Error Linear Units" using tanh approximation.
julia> lineplot(gelu_tanh, -2, 2, height=7)
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊│ gelu_tanh(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠊⠁⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠒⠉⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⣀⡠⠤⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⣤⣤⣤⣤⣤⣤⣤⣤⡤⠤⠤⠤⠤⠤⠤⠤⣤⣤⣤⡤⡧⠶⠶⠭⠥⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠉⠉⠉⠉⠉⠉⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> lineplot(gelu_tanh, -5, 0, height=7);
julia> lineplot!(ans, swish)
┌────────────────────────────────────────┐
0 │⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠒⠒⠤⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ gelu_tanh(x)
│⠑⠒⠢⠤⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇│ swish(x)
│⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢆⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⢠⡇⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠓⣄⠀⠀⠀⠀⠀⢠⡞⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠓⢄⣀⣀⡤⢣⠃⠀⠀│
-0.2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.gelu_erf — Functiongelu_erf(x) = xΦ(x) = 0.5x * (1 + erf(x/√2))Activation function from "Gaussian Error Linear Units" without approximation. The SpecialFunctions.jl package needs to be loaded to use this function.
NNlib.hardsigmoid — Functionhardσ(x) = max(0, min(1, (x + 3) / 6))Piecewise linear approximation of sigmoid.
julia> lineplot(hardsigmoid, -5, 5, height=7)
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢀⡠⠖⠋⠉⠉⠉⠉⠉⠉⠉⠉│ hardσ(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⣀⡤⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡠⠔⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⡗⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠊⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠖⠋⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⣀⣀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> lineplot(sigmoid, -5, 5, height=7)
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⣀⡠⠤⠖⠒⠒⠋⠉⠉⠉⠉⠉⠉│ σ(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⢀⡠⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⣀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⡏⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡔⠋⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠊⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⠤⠤⠤⠒⠊⠉⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.sigmoid_fast — Functionsigmoid_fast(x)This is a faster, and very slightly less accurate, version of sigmoid. For x::Float32, perhaps 3 times faster, and maximum errors 2 eps instead of 1.
See also tanh_fast.
julia> sigmoid(0.2f0)
0.54983395f0
julia> sigmoid_fast(0.2f0)
0.54983395f0
julia> hardσ(0.2f0)
0.53333336f0NNlib.hardtanh — Functionhardtanh(x) = max(-1, min(1, x))Segment-wise linear approximation of tanh, much cheaper to compute. See "Large Scale Machine Learning".
See also tanh_fast.
julia> lineplot(hardtanh, -2, 2, height=7)
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⣀⠔⠋⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ hardtanh(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⣀⡤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢀⡤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⡷⠥⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠖⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠖⠋⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⠔⠋⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x
julia> lineplot(tanh, -2, 2, height=7)
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⣀⡠⠤⠤⠒⠒⠒⠊⠉⠉⠉│ tanh(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢀⡠⠔⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢀⡤⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⡷⠥⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠖⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡠⠔⠊⠁⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⣀⣀⣀⡠⠤⠤⠤⠖⠒⠊⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.tanh_fast — Functiontanh_fast(x)This is a faster but slighly less accurate version of tanh.
Where Julia's tanh function has an error under 2 eps, this may be wrong by 5 eps, a reduction by less than one decimal digit.
For x::Float32 this is usually about 10 times faster, with a smaller speedup for x::Float64. For any other number types, it just calls tanh.
See also sigmoid_fast.
julia> tanh(0.5f0)
0.46211717f0
julia> tanh_fast(0.5f0)
0.46211714f0
julia> hard_tanh(0.5f0)
0.5f0NNlib.leakyrelu — Functionleakyrelu(x, a=0.01) = max(a*x, x)Leaky Rectified Linear Unit activation function. You can also specify the coefficient explicitly, e.g. leakyrelu(x, 0.01).
julia> lineplot(x -> leakyrelu(x, 0.5), -2, 2, height=7)
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠒⠉│ #42(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊⠉⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⣀⡤⠖⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⣀⠤⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⣤⣤⡤⡧⠶⠭⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀⠤⠤⠒⠒⠋⠉⠁⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⣀⣀⠤⠤⠒⠒⠊⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> leakyrelu(-10f0, 0.2)
-2.0f0
julia> leakyrelu(-10f0, 0.02)
-0.5f0NNlib.lisht — Functionlisht(x) = x * tanh(x)Activation function from "LiSHT: Non-Parametric Linearly Scaled Hyperbolic Tangent ..."
julia> lineplot(lisht, -2, 2, height=7)
┌────────────────────────────────────────┐
2 │⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔│ lisht(x)
│⠀⠈⠑⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠊⠁⠀│
│⠀⠀⠀⠀⠈⠣⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠑⢆⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⡄⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢀⠔⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⢄⡀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⡠⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣄⣀⣀⣇⣀⣀⠤⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> lineplot!(ans, logcosh)
┌────────────────────────────────────────┐
2 │⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔│ lisht(x)
│⠀⠈⠑⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠊⠁⠀│ logcosh(x)
│⠢⣄⠀⠀⠈⠣⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⣀⠔│
f(x) │⠀⠈⠑⠢⣀⠀⠀⠑⢆⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠁⠀⣀⠔⠊⠁⠀│
│⠀⠀⠀⠀⠀⠉⠢⢄⡀⠉⠢⡄⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢀⠔⠋⠀⡠⠔⠋⠁⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠦⣌⡓⢄⡀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⡠⠖⣁⠤⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠪⠷⣦⣄⣀⣀⣇⣀⣀⣤⠶⠕⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.logcosh — Functionlogcosh(x)Return log(cosh(x)) which is computed in a numerically stable way.
julia> lineplot(logcosh, -5, 5, height=7)
┌────────────────────────────────────────┐
5 │⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ logcosh(x)
│⠉⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠋│
│⠀⠀⠀⠑⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠊⠁⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠑⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠊⠁⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠦⡀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢀⡤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⡀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⡤⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⢄⣀⣀⣇⣀⡠⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.logsigmoid — Functionlogσ(x)Return log(σ(x)) which is computed in a numerically stable way.
julia> lineplot(logsigmoid, -5, 5, height=7)
┌────────────────────────────────────────┐
0 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡧⠤⠔⠒⠒⠒⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ logσ(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠖⠊⠉⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠒⠉⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⢀⡤⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⣀⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⡤⠖⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-6 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.mish — Functionmish(x) = x * tanh(softplus(x))Activation function from "Mish: A Self Regularized Non-Monotonic Neural Activation Function".
julia> lineplot(mish, -5, 5, height=7)
┌────────────────────────────────────────┐
5 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠖⠋│ mish(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠒⠁⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠋⠁⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢀⡠⠖⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⢀⡤⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣧⣔⣊⣁⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀│
-1 │⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.relu — Functionrelu(x) = max(0, x)Rectified Linear Unit activation function.
julia> lineplot(relu, -2, 2, height=7)
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠋│ relu(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠊⠁⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠊⠁⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢀⡤⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡠⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡠⠖⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣇⠔⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.relu6 — Functionrelu6(x) = min(max(0, x), 6)Rectified Linear Unit activation function capped at 6. See "Convolutional Deep Belief Networks" from CIFAR-10.
julia> lineplot(relu6, -10, 10, height=7)
┌────────────────────────────────────────┐
6 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠎⠉⠉⠉⠉⠉⠉⠉⠉│ relu6(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⡤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡠⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⢀⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡔⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡧⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-10⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.rrelu — Functionrrelu(x, lo=1/8, hi=1/3) = max(a*x, x)
# where `a` is randomly sampled from uniform distribution `U(lo, hi)`Randomized Leaky Rectified Linear Unit activation function. See "Empirical Evaluation of Rectified Activations" You can also specify the bound explicitly, e.g. rrelu(x, 0.0, 1.0).
julia> lineplot(rrelu, -20, 10, height=7)
┌────────────────────────────────────────┐
10 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠖⠋│ rrelu(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢀⡠⠖⠋⠁⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢀⡠⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⠤⣤⣤⢤⣤⣤⠤⠤⠤⢼⠮⠥⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⣰⢀⣆⡄⣄⡄⡠⡰⠦⠷⡜⢢⠷⠳⠢⠊⠉⠉⠀⠀⠁⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠃⠉⠙⠘⠃⠈⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-10 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-20⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> extrema(rrelu.(fill(-10f0, 1000)))
(-3.3316886f0, -1.2548422f0)NNlib.selu — Functionselu(x) = λ * (x ≥ 0 ? x : α * (exp(x) - 1))
λ ≈ 1.05070...
α ≈ 1.67326...Scaled exponential linear units. See "Self-Normalizing Neural Networks".
julia> lineplot(selu, -3, 2, height=7)
┌────────────────────────────────────────┐
3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ selu(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠤⠒│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢀⣀⠤⠖⠊⠉⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⣀⡠⠤⠒⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⣉⠭⠛⡏⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀⡤⠤⠒⠊⠉⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-2 │⠤⠤⠖⠒⠒⠒⠒⠒⠒⠒⠉⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> selu(-10f0)
-1.7580194f0NNlib.sigmoid — Functionσ(x) = 1 / (1 + exp(-x))Classic sigmoid activation function. Unicode σ can be entered as \sigma then tab, in many editors. The ascii name sigmoid is also exported.
See also sigmoid_fast.
julia> using UnicodePlots
julia> lineplot(sigmoid, -5, 5, height=7)
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⣀⡠⠤⠖⠒⠒⠋⠉⠉⠉⠉⠉⠉│ σ(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⢀⡠⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⣀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⡏⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡔⠋⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠊⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⠤⠤⠤⠒⠊⠉⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> sigmoid === σ
trueNNlib.softplus — Functionsoftplus(x) = log(exp(x) + 1)See "Deep Sparse Rectifier Neural Networks", JMLR 2011.
julia> lineplot(softplus, -3, 3, height=7)
┌────────────────────────────────────────┐
4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ softplus(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊⠁⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠔⠊⠁⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⣀⡠⠤⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⡧⠤⠒⠊⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⡠⠤⠤⠤⠤⠔⠒⠒⠚⠉⠉⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> lineplot!(ans, relu)
┌────────────────────────────────────────┐
4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ softplus(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠│ relu(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⡴⠞⠋⠁│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⡴⠞⠋⠁⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⣀⡠⢤⡲⠝⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⡧⠤⠒⠊⣉⠥⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⣠⣤⣤⣤⣤⣔⣒⣒⣚⣉⣉⣁⣀⣇⠴⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> softplus(16f0)
16.0f0NNlib.softshrink — Functionsoftshrink(x, λ=0.5) =
(x ≥ λ ? x - λ : (-λ ≥ x ? x + λ : 0))See "Softshrink Activation Function".
julia> lineplot(softshrink, -2, 2, height=7)
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀│ softshrink(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡤⠔⠒⠉⠁│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⡤⠤⠒⠋⠁⠀⠀⠀⠀⠀⠀│
f(x) │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⣤⡤⠤⠤⠤⠤⠤⠤⡧⠤⠤⠤⠤⠶⠮⠭⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⢀⣀⠤⠖⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⣀⠤⠔⠒⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-2 │⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> lineplot!(ans, tanhshrink)
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀│ softshrink(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡤⠔⠒⣉⡡│ tanhshrink(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⡤⠤⣒⣋⠥⠤⠒⠊⠉⠁⠀│
f(x) │⠤⠤⠤⠤⠤⠤⠤⠤⠤⣤⣤⣤⣤⡤⠤⠤⠤⠤⠤⠤⡷⠶⠶⠶⠶⠶⠾⠿⠯⠭⠭⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⢀⣀⡠⠤⠖⢒⣋⠭⠗⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠊⣉⠤⠔⠒⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-2 │⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀
julia> softshrink.((-10f0, 10f0))
(-9.5f0, 9.5f0)NNlib.softsign — Functionsoftsign(x) = x / (1 + |x|)See "Quadratic Polynomials Learn Better Image Features" (2009).
julia> lineplot(softsign, -5, 5, height=7)
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⣀⣀⣀⠤⠤⠤⠤⠤│ softsign(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⣀⡤⠖⠒⠋⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡔⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡯⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⣀⠤⠤⠒⠋⠁⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⠒⠒⠒⠒⠒⠊⠉⠉⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> lineplot!(ans, tanh)
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⢀⡤⠖⠊⠉⠉⠉⣉⣉⣉⣉⣉⠭⠭⠭⠭⠭│ softsign(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡔⣃⡤⠖⠒⠋⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ tanh(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣧⡞⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡯⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡴⠃⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⣀⠤⠤⠒⢋⠕⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⣒⣒⣒⣒⣒⣊⣉⣉⣉⣉⣁⣀⣀⡠⠤⠒⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> softsign(1f0)
0.5f0
julia> softsign(100f0)
0.990099f0NNlib.swish — Functionswish(x) = x * σ(x)Self-gated activation function. See "Swish: a Self-Gated Activation Function".
julia> lineplot(swish, -2, 2, height=7)
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤│ swish(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠖⠋⠁⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠖⠋⠁⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢀⣀⡤⠔⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⣤⣤⡤⡧⠴⠶⠯⠥⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠉⠑⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠉⠉⠉⠉⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ NNlib.hardswish — Functionhardswish(x) = x * hardσ(x)Hard-Swish activation function. See "Searching for MobileNetV3".
julia> lineplot(hardswish, -2, 5, height = 7)
┌────────────────────────────────────────┐
5 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠔⠒⠉│ hardswish(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡠⠔⠒⠉⠁⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠖⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢀⣀⠤⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣇⣤⣤⣖⣚⣉⣁⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀│
-1 │⠉⠒⠒⠒⠒⠉⠉⠉⠉⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> lineplot(hardswish, -4, 0, height = 7);
julia> lineplot!(ans, swish)
┌────────────────────────────────────────┐
0 │⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡜│ hardswish(x)
│⠒⠒⠢⠤⢄⣀⡀⠀⠀⠀⠀⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀│ swish(x)
│⠀⠀⠀⠀⠀⠀⠈⠉⠑⠒⠦⢄⣘⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠃⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⡖⠦⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⢔⠏⠁⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠣⣄⠀⠉⠑⠒⠦⠤⢄⣀⣀⣀⣀⡠⠤⠖⣊⠕⠁⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠓⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠖⠁⠀⠀⠀⠀⠀⠀⠀│
-0.4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⠤⠔⠒⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> hardswish.(-5:5)'
1×11 adjoint(::Vector{Float64}) with eltype Float64:
-0.0 -0.0 -0.0 -0.333333 -0.333333 0.0 0.666667 1.66667 3.0 4.0 5.0NNlib.tanhshrink — Functiontanhshrink(x) = x - tanh(x)See "Tanhshrink Activation Function".
julia> lineplot(tanhshrink, -3, 3, height=7)
┌────────────────────────────────────────┐
3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ tanhshrink(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡠⠤⠖⠊│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢀⣀⡠⠤⠒⠊⠉⠁⠀⠀⠀⠀│
f(x) │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⣤⡤⠤⠤⠤⠤⠤⠤⡷⠶⠶⠶⠶⠶⠮⠭⠥⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│
│⠀⠀⠀⠀⠀⣀⡠⠴⠒⠊⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⡠⠴⠒⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> tanhshrink.((-10f0, 10f0))
(-9.0f0, 9.0f0)NNlib.trelu — Functiontrelu(x, theta=1) = x > theta ? x : 0Threshold gated rectified linear activation function. See "Zero-bias autoencoders and the benefits of co-adapting features"
julia> lineplot(trelu, -2, 4, height=7)
┌────────────────────────────────────────┐
4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠖⠋│ trelu(x)
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠖⠋⠁⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀│
f(x) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣠⠤⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣇⣀⣀⣀⣀⣀⣀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀-2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Attention
NNlib.dot_product_attention — Functiondot_product_attention(query, key, value, [bias]; [fdrop, mask, nheads])Multihead dot product attention used in transformer architectures.
The input arrays must have the first two dimensions given by the number of features and the sequence length, then an arbitrary number of batch dimensions or none.
Returns the attention output array of size (v_dim, q_len, batch_size...) and the attention scores of size (kv_len, q_len, nheads, batch_size...).
See also dot_product_attention_scores if you only need the attention scores.
Arguments
query: Query array of size(qk_dim, q_len, batch_size...).key: Key array of size(qk_dim, kv_len, batch_size...).value: Value array of size(v_dim, kv_len, batch_size...).bias: Eithernothingor an array broadcastable to size(kv_len, q_len, nheads, batch_size). It will be added to the attention scores before applying the softmax. Defaultnothing.fdrop: A dropout function or layer to be applied on the attention scores right after the softmax. Defaultidentity(no dropout).mask: Eithernothingor a boolean array broadcastable to size(kv_len, q_len, nheads, batch_size). The mask is applied to the attention scores just before the softmax. Seemake_causal_maskfore creating causal masks. Defaultnothing.nheads: Number of heads to split the input arrays into. Default1.
Examples
q, k, v = rand(10, 20, 2), rand(10, 30, 2), rand(20, 30, 2)
y, α = dot_product_attention(q, k, v)NNlib.dot_product_attention_scores — Functiondot_product_attention_scores(query, key, [bias]; [fdrop, mask])Return the attention scores for the dot_product_attention. Input arrays must have dimensions (num_features ÷ nheads, nheads, sequence_length, batch_size).
See dot_product_attention for more details.
NNlib.make_causal_mask — Functionmake_causal_mask(x, dims=2)Return a boolean square matrix m of the same type as x and of side size(x, dims). Its elements are set such that m[i, j] == i ≤ j.
Can be used to mask the attention scores in dot_product_attention.
Softmax
Flux's logitcrossentropy uses NNlib.softmax internally.
NNlib.softmax — Functionsoftmax(x; dims = 1)Softmax turns input array x into probability distributions that sum to 1 along the dimensions specified by dims. It is semantically equivalent to the following:
softmax(x; dims = 1) = exp.(x) ./ sum(exp.(x), dims = dims)with additional manipulations enhancing numerical stability.
For a matrix input x it will by default (dims = 1) treat it as a batch of vectors, with each column independent. Keyword dims = 2 will instead treat rows independently, and so on.
See also logsoftmax.
Examples
julia> softmax([1, 2, 3])
3-element Vector{Float64}:
0.09003057317038046
0.24472847105479764
0.6652409557748218
julia> softmax([1 2 3; 2 2 2]) # dims=1
2×3 Matrix{Float64}:
0.268941 0.5 0.731059
0.731059 0.5 0.268941
julia> softmax([1 2 3; 2 2 2]; dims=2)
2×3 Matrix{Float64}:
0.0900306 0.244728 0.665241
0.333333 0.333333 0.333333Note that, when used with Flux.jl, softmax must not be passed to layers like Dense which accept an activation function. The activation is broadcasted over the result, thus applies to individual numbers. But softmax always needs to see the whole column.
julia> using Flux
julia> x = randn(Float32, 4, 4, 3, 13);
julia> model = Chain(Conv((4, 4), 3 => 8, tanh), Flux.flatten, Dense(8 => 7), softmax);
julia> model(x) |> size
(7, 13)
julia> Dense(4 => 7, softmax)(x)
ERROR: `softmax(x)` called with a number, but it expects an array. NNlib.logsoftmax — Functionlogsoftmax(x; dims = 1)Computes the log of softmax in a more numerically stable way than directly taking log.(softmax(xs)). Commonly used in computing cross entropy loss.
It is semantically equivalent to the following:
logsoftmax(x; dims = 1) = x .- log.(sum(exp.(x), dims = dims))See also softmax.
Pooling
Flux's AdaptiveMaxPool, AdaptiveMeanPool, GlobalMaxPool, GlobalMeanPool, MaxPool, MeanPool and lpnormpool use NNlib.PoolDims, NNlib.maxpool, NNlib.meanpool and NNlib.lpnormpool as their backend.
NNlib.PoolDims — TypePoolDims(x_size::NTuple{M}, k::Union{NTuple{L, Int}, Int};
stride=k, padding=0, dilation=1) where {M, L}Dimensions for a "pooling" operation that can have an arbitrary input size, kernel size, stride, dilation, and channel count. Used to dispatch onto efficient implementations at compile-time.
NNlib.maxpool — Functionmaxpool(x, k::NTuple{N, Integer}; pad=0, stride=k)Perform max pool operation with window size k on input tensor x.
Arguments:
xandk: Expectsndim(x) ∈ 3:5, and alwayslength(k) == ndim(x) - 2pad: Seepad_zerosfor details.stride: Either a tuple with the same length ask, or one integer for all directions. Default isk.
NNlib.meanpool — Functionmeanpool(x, k::NTuple{N, Integer}; pad=0, stride=k)Perform mean pool operation with window size k on input tensor x.
Arguments:
xandk: Expectsndim(x) ∈ 3:5, and alwayslength(k) == ndim(x) - 2pad: Seepad_zerosfor details.stride: Either a tuple with the same length ask, or one integer for all directions. Default isk.
NNlib.lpnormpool — Functionlpnormpool(x, p::Real, k::NTuple{N, Integer}; pad=0, stride=k)Perform Lp pool operation with value of the Lp norm p and window size k on input tensor x, also known as LPPool in pytorch. This pooling operator from Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks.
Arguments:
xandk: Expectsndim(x) ∈ 3:5, and alwayslength(k) == ndim(x) - 2pis restricted to0 < p < Inf.pad: Seepad_zerosfor details.stride: Either a tuple with the same length ask, or one integer for all directions. Default isk.
For all elements x in a size k window, lpnormpool computes (∑ᵢ xᵢ^p)^(1 / p) as an element of the output.
Thus lpnormpool(x, 1, k) ./ prod(k) ≈ meanpool(x, k) and lpnormpool(x, 2, k).^2 ./ prod(k) ≈ meanpool(x.^2, k).
Padding
NNlib.pad_reflect — Functionpad_reflect(x, pad::Tuple; [dims])
pad_reflect(x, pad::Int; [dims])Pad the array x reflecting its values across the border.
pad can a tuple of integers (l1, r1, ..., ln, rn) of some length 2n that specifies the left and right padding size for each of the dimensions in dims. If dims is not given, it defaults to the first n dimensions.
If pad is an integer, it is applied on both sides on every dimension in dims. In this case, dims defaults to the first ndims(x)-2 dimensions (i.e. excludes the channel and batch dimension).
See also pad_repeat, pad_symmetric, pad_circular, and pad_constant.
julia> r = reshape(1:9, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
1 4 7
2 5 8
3 6 9
julia> pad_reflect(r, (1,2,1,2))
6×6 Matrix{Int64}:
5 2 5 8 5 2
4 1 4 7 4 1
5 2 5 8 5 2
6 3 6 9 6 3
5 2 5 8 5 2
4 1 4 7 4 1NNlib.pad_symmetric — Functionpad_symmetric(x, pad::Tuple; [dims])
pad_symmetric(x, pad::Int; [dims])Pad the array x reflecting its values symmetrically across the border, i.e. the border values of x are present in the padding values, in contrast to pad_reflect.
pad can a tuple of integers (l1, r1, ..., ln, rn) of some length 2n that specifies the left and right padding size for each of the dimensions in dims. If dims is not given, it defaults to the first n dimensions.
If pad is an integer, it is applied on both sides on every dimension in dims. In this case, dims defaults to the first ndims(x)-2 dimensions (i.e. excludes the channel and batch dimension).
See also pad_repeat, pad_reflect, pad_circular, and pad_constant.
julia> r = reshape(1:9, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
1 4 7
2 5 8
3 6 9
julia> pad_symmetric(r, (1,2,1,2))
6×6 Matrix{Int64}:
1 1 4 7 7 4
1 1 4 7 7 4
2 2 5 8 8 5
3 3 6 9 9 6
3 3 6 9 9 6
2 2 5 8 8 5NNlib.pad_circular — Functionpad_circular(x, pad::Tuple; [dims])
pad_circular(x, pad::Int; [dims])Pad the array x "circularly" across the border by wrapping around values from the opposite side of x.
pad can a tuple of integers (l1, r1, ..., ln, rn) of some length 2n that specifies the left and right padding size for each of the dimensions in dims. If dims is not given, it defaults to the first n dimensions.
If pad is an integer, it is applied on both sides on every dimension in dims. In this case, dims defaults to the first ndims(x)-2 dimensions (i.e. excludes the channel and batch dimension).
The pad length on either side in any dimension must not exceed the size of x in that dimension, i.e. pad_circular is not able to create abitrary sized tilings of x.
See also pad_repeat, pad_reflect, pad_symmetric, and pad_constant.
julia> r = reshape(1:9, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
1 4 7
2 5 8
3 6 9
julia> pad_circular(r, (1,2,1,2))
6×6 Matrix{Int64}:
9 3 6 9 3 6
7 1 4 7 1 4
8 2 5 8 2 5
9 3 6 9 3 6
7 1 4 7 1 4
8 2 5 8 2 5NNlib.pad_repeat — Functionpad_repeat(x, pad::Tuple; [dims])
pad_repeat(x, pad::Int; [dims])Pad the array x repeating the values on the border.
pad can a tuple of integers (l1, r1, ..., ln, rn) of some length 2n that specifies the left and right padding size for each of the dimensions in dims. If dims is not given, it defaults to the first n dimensions.
If pad is an integer, it is applied on both sides on every dimension in dims. In this case, dims defaults to the first ndims(x)-2 dimensions (i.e. excludes the channel and batch dimension).
See also pad_reflect, pad_symmetric, pad_circular, and pad_constant.
julia> r = reshape(1:9, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
1 4 7
2 5 8
3 6 9
julia> pad_repeat(r, (1,2,3,4))
6×10 Matrix{Int64}:
1 1 1 1 4 7 7 7 7 7
1 1 1 1 4 7 7 7 7 7
2 2 2 2 5 8 8 8 8 8
3 3 3 3 6 9 9 9 9 9
3 3 3 3 6 9 9 9 9 9
3 3 3 3 6 9 9 9 9 9NNlib.pad_constant — Functionpad_constant(x, pad::Tuple, val = 0; [dims = :])
pad_constant(x, pad::Int, val = 0; [dims = :])Pad the array x with the constant value val.
pad can be a tuple of integers. If it is of some length 2 * length(dims) that specifies the left and right padding size for each of the dimensions in dims as (l1, r1, ..., ln, rn). If supplied with a tuple of length length(dims) instead, it applies symmetric padding. If dims is not given, it defaults to all dimensions.
For integer pad input, it is applied on both sides on every dimension in dims.
See also pad_zeros, pad_repeat, pad_reflect, pad_symmetric, and pad_circular.
julia> r = reshape(1:4, 2, 2)
2×2 reshape(::UnitRange{Int64}, 2, 2) with eltype Int64:
1 3
2 4
julia> pad_constant(r, (1, 2, 3, 4), 8)
5×9 Matrix{Int64}:
8 8 8 8 8 8 8 8 8
8 8 8 1 3 8 8 8 8
8 8 8 2 4 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
julia> pad_constant(r, 1, 8)
4×4 Matrix{Int64}:
8 8 8 8
8 1 3 8
8 2 4 8
8 8 8 8
julia> r = reshape(1:27, 3, 3, 3)
3×3×3 reshape(::UnitRange{Int64}, 3, 3, 3) with eltype Int64:
[:, :, 1] =
1 4 7
2 5 8
3 6 9
[:, :, 2] =
10 13 16
11 14 17
12 15 18
[:, :, 3] =
19 22 25
20 23 26
21 24 27
julia> pad_constant(r, (2,1), dims = 1) # assymetric padding
6×3×3 Array{Int64, 3}:
[:, :, 1] =
0 0 0
0 0 0
1 4 7
2 5 8
3 6 9
0 0 0
[:, :, 2] =
0 0 0
0 0 0
10 13 16
11 14 17
12 15 18
0 0 0
[:, :, 3] =
0 0 0
0 0 0
19 22 25
20 23 26
21 24 27
0 0 0
julia> pad_constant(r, (2,1, 3), dims = (1,2)) # padding must always be either the same length as dims, or double it
ERROR: ArgumentError: Could not parse padding (2, 1, 3) and dims (1, 2)
Stacktrace:
[...]NNlib.pad_zeros — Functionpad_zeros(x, pad::Tuple; [dims])
pad_zeros(x, pad::Int; [dims])Pad the array x with zeros. Equivalent to pad_constant with the constant equal to 0.
Convolution
Flux's Conv and CrossCor layers use NNlib.DenseConvDims and NNlib.conv internally.
NNlib.conv supports complex datatypes on CPU and CUDA devices.
Therefore for every regular convolution (flipkernel=false) kernel is flipped before calculation. For better performance, use cross-correlation (flipkernel=true) and manually flip the kernel before NNlib.conv call. Flux handles this automatically, this is only required for direct calls.
NNlib.conv — Functionconv(x, w; stride = 1, pad = 0, dilation = 1, flipped = false, groups = 1)Apply convolution filter w to input x. x and w are 3d/4d/5d tensors in 1d/2d/3d convolutions respectively. x and w may have real or complex element types.
NNlib.ConvDims — TypeConvDimsType system-level information about convolution dimensions. Critical for things like im2col!() to generate efficient code, and helpful to reduce the number of kwargs getting passed around.
NNlib.depthwiseconv — Functiondepthwiseconv(x, w; stride=1, pad=0, dilation=1, flipped=false)Depthwise convolution operation with filter w on input x. x and w are 3d/4d/5d tensors in 1d/2d/3d convolutions respectively.
NNlib.DepthwiseConvDims — TypeDepthwiseConvDimsConcrete subclass of ConvDims for a depthwise convolution. Differs primarily due to characterization by C_in, C_mult, rather than C_in, C_out. Useful to be separate from DenseConvDims primarily for channel calculation differences.
NNlib.DenseConvDims — TypeDenseConvDimsConcrete subclass of ConvDims for a normal, dense, conv2d/conv3d.
NNlib.unfold — Functionunfold(x, kernel_size; stride = 1, pad = 0, dilation = 0, flipped = true)Places sliding windows of x into a container tensor of size (num_windows, window_size, batchsize). The window size is determined by the prod(spatial dims of kernel)*input_channels. The number of sliding windows will match those of convolution (conv) with the same kernel_size and arguments. Note that by default conv flips the spatial dimensions of its kernel (default flipped=false), whereas unfold does not (default flipped=true). Uses NNlib.im2col! as backend.
See also fold, the adjoint/transpose operator and a potential inverse of unfold.
Example
The below example demonstrates that unfold uses the same sliding windows as conv. In general batched_mul + unfold should not be used to achieve convolution.
julia> x = reshape([100 2 3 40 5 6 700], 7, 1, 1); # 1D data, 1 channel, batch of 1
julia> w = reshape([1 0 -1], 3, 1, 1); # 1D conv kernel of length 3
julia> kws = (pad=1, stride=2, flipped=true); # use same args for conv and unfold
julia> z = NNlib.unfold(x, size(w); kws...)
4×3×1 Array{Int64, 3}:
[:, :, 1] =
0 100 2
2 3 40
40 5 6
6 700 0
julia> y1 = conv(x, w; kws...)
4×1×1 Array{Int64, 3}:
[:, :, 1] =
-2
-38
34
6
julia> y2 = z ⊠ w # ⊠ (\boxtimes) is NNlib.batched_mul
4×1×1 Array{Int64, 3}:
[:, :, 1] =
-2
-38
34
6NNlib.fold — Functionfold(y, output_size, kernel_size; stride = 1, pad = 0, dilation = 0, flipped = true)The adjoint/transpose operator of unfold. It accumulates sliding windows from the output of unfold into a container tensor of size output_size. An inverse to unfold may be obtained (in some cases) by using fold and accounting for scaling issues with a divisor (see example). Uses NNlib.col2im! as backend.
See also unfold.
Example
julia> x = reshape([100 2 3 40 5 6 700], 7, 1, 1); # 1D data, 1 channel, batch of 1
julia> y = NNlib.unfold(x, (3,1,1)) # sliding window of size 3
5×3×1 Array{Int64, 3}:
[:, :, 1] =
100 2 3
2 3 40
3 40 5
40 5 6
5 6 700
julia> z = NNlib.fold(y, size(x), (3,1,1)) # sum of contributions in y. 100 appears once, 40 three times
7×1×1 Array{Int64, 3}:
[:, :, 1] =
100
4
9
120
15
12
700
julia> divisor = NNlib.fold(NNlib.unfold(ones(size(x)...), (3,1,1)), size(x), (3,1,1))
7×1×1 Array{Float64, 3}:
[:, :, 1] =
1.0
2.0
3.0
3.0
3.0
2.0
1.0
julia> z ./ divisor
7×1×1 Array{Float64, 3}:
[:, :, 1] =
100.0
2.0
3.0
40.0
5.0
6.0
700.0In general, an inverse to unfold does not exist if divisor contains zeros.
Upsampling
Flux's Upsample layer uses NNlib.upsample_nearest, NNlib.upsample_bilinear, and NNlib.upsample_trilinear as its backend. Additionally, Flux's PixelShuffle layer uses NNlib.pixel_shuffle as its backend.
NNlib.upsample_nearest — Functionupsample_nearest(x, scale::NTuple{S,Int})
upsample_nearest(x; size::NTuple{S,Int})Upsamples the array x by integer multiples along the first S dimensions. Subsequent dimensions of x are not altered.
Either the scale factors or the final output size can be specified.
See also upsample_bilinear, for two dimensions of an N=4 array.
Example
julia> upsample_nearest([1 2 3; 4 5 6], (2, 3))
4×9 Matrix{Int64}:
1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
4 4 4 5 5 5 6 6 6
4 4 4 5 5 5 6 6 6
julia> ans == upsample_nearest([1 2 3; 4 5 6]; size=(4, 9)) # equivalent
true
julia> upsample_nearest([1 2 3; 4 5 6], (2,))
4×3 Matrix{Int64}:
1 2 3
1 2 3
4 5 6
4 5 6
julia> ans == upsample_nearest([1 2 3; 4 5 6], size=(4,))
trueNNlib.∇upsample_nearest — Function∇upsample_nearest(Δ::AbstractArray{T,3}, scales::NTuple{S, <:Integer}) where TArguments
Δ: Incoming gradient array, backpropagated from downstream layersscales: scales by which the image was upsampled in the first place
Outputs
dx: Downsampled version ofΔ
NNlib.upsample_linear — Functionupsample_linear(x::AbstractArray{T,3}, scale::Real; align_corners::Bool = true)
upsample_linear(x::AbstractArray{T,3}; size::Integer, align_corners::Bool = true)Upsamples the first dimension of the array x by the upsample provided scale, using linear interpolation. As an alternative to using scale, the resulting array size can be directly specified with a keyword argument.
The size of the output is equal to (scale*S1, S2, S3), where S1, S2, S3 = size(x).
NNlib.∇upsample_linear — Function∇upsample_linear(Δ::AbstractArray{T,3}; size::Integer, align_corners::Bool = true) where TArguments
Δ: Incoming gradient array, backpropagated from downstream layerssize: Size of the image upsampled in the first place
Outputs
dx: Downsampled version ofΔ
NNlib.upsample_bilinear — Functionupsample_bilinear(x::AbstractArray{T,4}, scale::NTuple{2,Real}; align_corners::Bool = true)
upsample_bilinear(x::AbstractArray{T,4}; size::NTuple{2,Integer}, align_corners::Bool = true)Upsamples the first 2 dimensions of the array x by the upsample factors stored in scale, using bilinear interpolation. As an alternative to using scale, the resulting image size can be directly specified with a keyword argument.
The size of the output is equal to (scale[1]*S1, scale[2]*S2, S3, S4), where S1, S2, S3, S4 = size(x).
Examples
julia> x = reshape(Float32[1 2 3; 4 5 6], (2,3,1,1))
2×3×1×1 Array{Float32, 4}:
[:, :, 1, 1] =
1.0 2.0 3.0
4.0 5.0 6.0
julia> upsample_bilinear(x, (2, 3))
4×9×1×1 Array{Float32, 4}:
[:, :, 1, 1] =
1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0
3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0
julia> ans == upsample_bilinear(x; size=(4, 9)) # specify ouput size instead
true
julia> upsample_bilinear(x, (2.5, 3.5)) # non-integer scaling factors are allowed
5×10×1×1 Array{Float32, 4}:
[:, :, 1, 1] =
1.0 1.22222 1.44444 1.66667 1.88889 … 2.33333 2.55556 2.77778 3.0
1.75 1.97222 2.19444 2.41667 2.63889 3.08333 3.30556 3.52778 3.75
2.5 2.72222 2.94444 3.16667 3.38889 3.83333 4.05556 4.27778 4.5
3.25 3.47222 3.69444 3.91667 4.13889 4.58333 4.80556 5.02778 5.25
4.0 4.22222 4.44444 4.66667 4.88889 5.33333 5.55556 5.77778 6.0NNlib.∇upsample_bilinear — Function∇upsample_bilinear(Δ::AbstractArray{T,4}; size::NTuple{2,Integer}, align_corners::Bool = true) where TArguments
Δ: Incoming gradient array, backpropagated from downstream layerssize: Lateral (W,H) size of the image upsampled in the first place
Outputs
dx: Downsampled version ofΔ
NNlib.upsample_trilinear — Functionupsample_trilinear(x::AbstractArray{T,5}, scale::NTuple{3,Real}; align_corners::Bool = true)
upsample_trilinear(x::AbstractArray{T,5}; size::NTuple{3,Integer}, align_corners::Bool = true)Upsamples the first 3 dimensions of the array x by the upsample factors stored in scale, using trilinear interpolation. As an alternative to using scale, the resulting image size can be directly specified with a keyword argument.
The size of the output is equal to (scale[1]*S1, scale[2]*S2, scale[3]*S3, S4, S5), where S1, S2, S3, S4, S5 = size(x).
Examples
upsample_trilinear(x, (2, 3, 4))
upsample_trilinear(x; size=(4, 9, 11)) # specify ouput size instead
upsample_trilinear(x, (2.5, 3.5, pi)) # non-integer scaling factors are allowedNNlib.∇upsample_trilinear — Function∇upsample_trilinear(Δ::AbstractArray{T,5}; size::NTuple{3,Integer}, align_corners::Bool = true) where TArguments
Δ: Incoming gradient array, backpropagated from downstream layerssize: Lateral size & depth (W,H,D) of the image upsampled in the first place
Outputs
dx: Downsampled version ofΔ
NNlib.pixel_shuffle — Functionpixel_shuffle(x, r::Integer)Pixel shuffling operation, upscaling by a factor r.
For 4-arrays representing N images, the operation converts input size(x) == (W, H, r^2*C, N) to output of size (r*W, r*H, C, N). For D-dimensional data, it expects ndims(x) == D+2 with channel and batch dimensions, and divides the number of channels by r^D.
Used in super-resolution networks to upsample towards high resolution features. Reference: Shi et. al., "Real-Time Single Image and Video Super-Resolution ...", CVPR 2016, https://arxiv.org/abs/1609.05158
Examples
julia> x = [10i + j + channel/10 for i in 1:2, j in 1:3, channel in 1:4, batch in 1:1]
2×3×4×1 Array{Float64, 4}:
[:, :, 1, 1] =
11.1 12.1 13.1
21.1 22.1 23.1
[:, :, 2, 1] =
11.2 12.2 13.2
21.2 22.2 23.2
[:, :, 3, 1] =
11.3 12.3 13.3
21.3 22.3 23.3
[:, :, 4, 1] =
11.4 12.4 13.4
21.4 22.4 23.4
julia> pixel_shuffle(x, 2) # 4 channels used up as 2x upscaling of image dimensions
4×6×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
11.1 11.3 12.1 12.3 13.1 13.3
11.2 11.4 12.2 12.4 13.2 13.4
21.1 21.3 22.1 22.3 23.1 23.3
21.2 21.4 22.2 22.4 23.2 23.4
julia> y = [i + channel/10 for i in 1:3, channel in 1:6, batch in 1:1]
3×6×1 Array{Float64, 3}:
[:, :, 1] =
1.1 1.2 1.3 1.4 1.5 1.6
2.1 2.2 2.3 2.4 2.5 2.6
3.1 3.2 3.3 3.4 3.5 3.6
julia> pixel_shuffle(y, 2) # 1D image, with 6 channels reduced to 3
6×3×1 Array{Float64, 3}:
[:, :, 1] =
1.1 1.3 1.5
1.2 1.4 1.6
2.1 2.3 2.5
2.2 2.4 2.6
3.1 3.3 3.5
3.2 3.4 3.6Rotation
Rotate images in the first two dimensions of an array.
NNlib.imrotate — Functionimrotate(arr::AbstractArray{T, 4}, θ; method=:bilinear, rotation_center=size(arr) .÷ 2 .+ 1)Rotates an array in the first two dimensions around the center pixel rotation_center. The default value of rotation_center is defined such that there is a integer center pixel for even and odd sized arrays which it is rotated around. For an even sized array of size (4,4) this would be (3,3), for an odd array of size (3,3) this would be (2,2) However, rotation_center can be also non-integer numbers if specified.
The angle θ is interpreted in radians.
The adjoint is defined with ChainRulesCore.jl. This method also runs with CUDA (and in principle all KernelAbstractions.jl supported backends).
Keywords
method=:bilinearfor bilinear interpolation ormethod=:nearestfor nearest neighbourrotation_center=size(arr) .÷ 2 .+ 1means there is a real center pixel around it is rotated.
Examples
julia> arr = zeros((4,4,1,1)); arr[2,2,1,1] = 1;
julia> arr
4×4×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
julia> NNlib.imrotate(arr, deg2rad(90)) # rotation around (3,3)
4×4×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
julia> NNlib.imrotate(arr, deg2rad(90), rotation_center=(2,2))
4×4×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
julia> arr = zeros((3,3,1,1)); arr[1,2,1,1] = 1
1
julia> arr
3×3×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
julia> NNlib.imrotate(arr, deg2rad(45))
3×3×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.207107 0.0
0.0 0.0 0.207107
0.0 0.0 0.0
julia> NNlib.imrotate(arr, deg2rad(45), method=:nearest)
3×3×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 0.0 1.0
0.0 0.0 0.0
0.0 0.0 0.0NNlib.∇imrotate — Function∇imrotate(dy, arr::AbstractArray{T, 4}, θ; method=:bilinear,
rotation_center=size(arr) .÷ 2 .+ 1)Adjoint for imrotate. Gradient only with respect to arr and not θ.
Arguments
dy: input gradientarr: Input from primal computationθ: rotation angle in radiansmethod=:bilinearormethod=:nearestrotation_center=size(arr) .÷ 2 .+ 1rotates around a real center pixel for even and odd sized arrays
Batched Operations
Flux's Bilinear layer uses NNlib.batched_mul internally.
NNlib.batched_mul — Functionbatched_mul(A, B) -> C
A ⊠ B # \boxtimesBatched matrix multiplication. Result has C[:,:,k...] == A[:,:,k...] * B[:,:,k...] where k... represent any indices in the last dimensions.
If ndims(A) == ndims(B) == 3 and size(B,3) == 1 then instead C[:,:,k] == A[:,:,k] * B[:,:,1], and similarly for A.
To transpose each matrix, apply batched_transpose to the array, or batched_adjoint for conjugate-transpose:
julia> A, B = randn(2,5,17), randn(5,9,17);
julia> A ⊠ B |> size
(2, 9, 17)
julia> batched_adjoint(A) |> size
(5, 2, 17)
julia> batched_mul(A, batched_adjoint(randn(9,5,17))) |> size
(2, 9, 17)
julia> A ⊠ randn(5,9,1) |> size
(2, 9, 17)
julia> batched_transpose(A) == PermutedDimsArray(A, (2,1,3))
trueThe equivalent PermutedDimsArray may be used in place of batched_transpose. Other permutations are also handled by BLAS, provided that the batch index k is not the first dimension of the underlying array. Thus PermutedDimsArray(::Array, (1,3,2)) and PermutedDimsArray(::Array, (3,1,2)) are fine.
However, A = PermutedDimsArray(::Array, (3,2,1)) is not acceptable to BLAS, since the batch dimension is the contiguous one: stride(A,3) == 1. This will be copied, as doing so is faster than batched_mul_generic!.
Both this copy and batched_mul_generic! produce @debug messages, and setting for instance ENV["JULIA_DEBUG"] = NNlib will display them.
batched_mul(A::Array{T,3}, B::Matrix)
batched_mul(A::Matrix, B::Array{T,3})
A ⊠ BThis is always matrix-matrix multiplication, but either A or B may lack a batch index.
When
Bis a matrix, result hasC[:,:,k] == A[:,:,k] * B[:,:]for allk.When
Ais a matrix, thenC[:,:,k] == A[:,:] * B[:,:,k]. This can also be done by reshaping and calling*, for instanceA ⊡ Busing TensorCore.jl, but is implemented here usingbatched_gemminstead ofgemm.
julia> randn(16,8,32) ⊠ randn(8,4) |> size
(16, 4, 32)
julia> randn(16,8,32) ⊠ randn(8,4,1) |> size # equivalent
(16, 4, 32)
julia> randn(16,8) ⊠ randn(8,4,32) |> size
(16, 4, 32)See also batched_vec to regard B as a batch of vectors, A[:,:,k] * B[:,k].
NNlib.batched_mul! — Functionbatched_mul!(C, A, B) -> C
batched_mul!(C, A, B, α=1, β=0)In-place batched matrix multiplication, equivalent to mul!(C[:,:,k], A[:,:,k], B[:,:,k], α, β) for all k. If size(B,3) == 1 then every batch uses B[:,:,1] instead.
This will call batched_gemm! whenever possible. For real arrays this means that, for X ∈ [A,B,C], either stride(X,1)==1 or stride(X,2)==1, the latter may be caused by batched_transpose or by for instance PermutedDimsArray(::Array, (3,1,2)). Unlike batched_mul this will never make a copy.
For complex arrays, the wrapper made by batched_adjoint must be outermost to be seen. In this case the strided accepted by BLAS are more restricted, if stride(C,1)==1 then only stride(AorB::BatchedAdjoint,2) == 1 is accepted.
NNlib.batched_adjoint — Functionbatched_transpose(A::AbstractArray{T,3})
batched_adjoint(A)Equivalent to applying transpose or adjoint to each matrix A[:,:,k].
These exist to control how batched_mul behaves, as it operates on such matrix slices of an array with ndims(A)==3.
PermutedDimsArray(A, (2,1,3)) is equivalent to batched_transpose(A), and is also understood by batched_mul (and more widely supported elsewhere).
BatchedTranspose{T, S} <: AbstractBatchedMatrix{T, 3}
BatchedAdjoint{T, S}Lazy wrappers analogous to Transpose and Adjoint, returned by batched_transpose etc.
NNlib.batched_transpose — Functionbatched_transpose(A::AbstractArray{T,3})
batched_adjoint(A)Equivalent to applying transpose or adjoint to each matrix A[:,:,k].
These exist to control how batched_mul behaves, as it operates on such matrix slices of an array with ndims(A)==3.
PermutedDimsArray(A, (2,1,3)) is equivalent to batched_transpose(A), and is also understood by batched_mul (and more widely supported elsewhere).
BatchedTranspose{T, S} <: AbstractBatchedMatrix{T, 3}
BatchedAdjoint{T, S}Lazy wrappers analogous to Transpose and Adjoint, returned by batched_transpose etc.
NNlib.batched_vec — Functionbatched_vec(A::Array{T,3}, B::Matrix)
batched_vec(A::Array{T,3}, b::Vector)Batched matrix-vector multiplication: the result has C[:,:,k] == A[:,:,k] * B[:,k] for all k, or else C[:,:,k] == A[:,:,k] * b for b::Vector.
With the same argument types, batched_mul(A, B) would regard B as a fixed matrix, not a batch of vectors. Both reshape and then call batched_mul(::Array{T,3}, ::Array{T,3}).
julia> A, B, b = randn(16,8,32), randn(8,32), randn(8);
julia> batched_vec(A,B) |> size
(16, 32)
julia> batched_vec(A,b) |> size
(16, 32)Gather and Scatter
Flux's Embedding layer uses NNlib.gather as its backend.
NNlib.gather — FunctionNNlib.gather(src, idx) -> dstReverse operation of scatter. Gathers data from source src and writes it in a destination dst according to the index array idx. For each k in CartesianIndices(idx), assign values to dst according to
dst[:, ... , k] .= src[:, ... , idx[k]...]Notice that if idx is a vector containing integers and src is a matrix, previous expression simplifies to
dst[:, k] .= src[:, idx[k]]and k will run over 1:length(idx).
The elements of idx can be integers or integer tuples and may be repeated. A single src column can end up being copied into zero, one, or multiple dst columns.
See gather! for an in-place version.
Examples
julia> NNlib.gather([1,20,300,4000], [2,4,2])
3-element Vector{Int64}:
20
4000
20
julia> NNlib.gather([1 2 3; 4 5 6], [1,3,1,3,1])
2×5 Matrix{Int64}:
1 3 1 3 1
4 6 4 6 4gather(src, IJK...)Convert the tuple of integer vectors IJK to a tuple of CartesianIndex and call gather on it: gather(src, CartesianIndex.(IJK...)).
Examples
julia> src = reshape([1:15;], 3, 5)
3×5 Matrix{Int64}:
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15
julia> NNlib.gather(src, [1, 2], [2, 4])
2-element Vector{Int64}:
4
11NNlib.gather! — FunctionNNlib.gather!(dst, src, idx)Reverse operation of scatter!. Gathers data from source src and writes it in destination dst according to the index array idx. For each k in CartesianIndices(idx), assign values to dst according to
dst[:, ... , k] .= src[:, ... , idx[k]...]Notice that if idx is a vector containing integers, and both dst and src are matrices, previous expression simplifies to
dst[:, k] .= src[:, idx[k]]and k will run over 1:length(idx).
The elements of idx can be integers or integer tuples and may be repeated. A single src column can end up being copied into zero, one, or multiple dst columns.
See gather for an allocating version.
NNlib.scatter — FunctionNNlib.scatter(op, src, idx; [init, dstsize])Scatter operation allocating a destination array dst and calling scatter!(op, dst, src, idx) on it.
If keyword
initis provided, it is used to initialize the content ofdst. Otherwise, the init values is inferred from the reduction operatoropfor some common operators (e.g.init = 0forop = +).If
dstsizeis provided, it will be used to define the size of destination array, otherwise it will be inferred bysrcandidx.
See scatter! for full details on how idx works.
Examples
julia> NNlib.scatter(+, [10,100,1000], [3,1,2])
3-element Vector{Int64}:
100
1000
10
julia> NNlib.scatter(+, [1 2 3 4; 5 6 7 8], [2,1,1,5])
2×5 Matrix{Int64}:
5 1 0 0 4
13 5 0 0 8
julia> NNlib.scatter(*, [10,200,3000], [1,4,2]; init = 10, dstsize = 6)
6-element Vector{Int64}:
100
30000
10
2000
10
10NNlib.scatter! — FunctionNNlib.scatter!(op, dst, src, idx)Scatter operation, which writes data in src into dst at locations idx. A binary reduction operator op is applied during the scatter. For each index k in idx, accumulates values in dst according to
dst[:, ..., idx[k]...] = (op).(dst[:, ..., idx[k]...], src[:, ..., k...])Arguments
op: Operations to be applied ondstandsrc, e.g.+,-,*,/,max,minandmean.dst: The destination forsrcto aggregate to. This argument will be mutated.src: The source data for aggregating.idx: The mapping for aggregation from source (index) to destination (value). Theidxarray can contain either integers or tuples.
Examples
julia> NNlib.scatter!(+, ones(3), [10,100], [1,3])
3-element Vector{Float64}:
11.0
1.0
101.0
julia> NNlib.scatter!(*, fill(0.5, 2, 4), [1 10; 100 1000], [3,2])
2×4 Matrix{Float64}:
0.5 5.0 0.5 0.5
0.5 500.0 50.0 0.5Sampling
NNlib.grid_sample — Functiongrid_sample(input::AbstractArray{T, 4}, grid::AbstractArray{T, 4}; padding_mode = :zeros)
grid_sample(input::AbstractArray{T, 5}, grid::AbstractArray{T, 4}; padding_mode = :zeros)
Given `input`, compute output by sampling `input` values at pixel
locations from `grid`. Uses bilinear interpolation to calculate output values.
This implementation assumes the extrema (`-1` and `1`) are considered
as referring to the center points of the input’s corner pixels
(i.e. align corners is `true`).
# Arguments
- `input`: Input array in `(W_in, H_in, [D_in,] C, N)` shape.
- `grid`: Input grid in `(2, W_out, H_out, [D_out,] N)` shape.
Where for each `(W_out, H_out, [D_out,] N)` grid contains `(x, y [,z])`
coordinates that specify sampling locations normalized by the `input` shape.
Therefore, `x`, `y` and [`z`] should have values in `[-1, 1]` range.
For example, `(x = -1, y = -1, [z = -1])` is the left-top[-front] pixel of `input`,
and `(x = 1, y = 1, [z = 1])` is the right-bottom-back pixel of `input`.
Out-of-bound values are handled according to the `padding_mode`.
- `padding_mode`: Out-of-bound padding.
`:zeros` to use `0` for out-of-bound grid locations.
`:border` to use border values for out-of-bound grid locations.
Default is `:zeros`.
# Returns
`(W_out, H_out, [D_out,] C, N)` sampled grid from `input`.
# Examples
In the example below, grid contains two out-of-bound sampling locations,
which are handled differently, depending on the `padding_mode`.
```jldoctest
julia> x = reshape(collect(1.0:4.0), (2, 2, 1, 1))
2×2×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
1.0 3.0
2.0 4.0
julia> grid = Array{Float64}(undef, 2, 3, 2, 1);
julia> grid[:, 1, 1, 1] .= (-3, -1);
julia> grid[:, 2, 1, 1] .= (0, -1);
julia> grid[:, 3, 1, 1] .= (1, -1);
julia> grid[:, 1, 2, 1] .= (-1, 1);
julia> grid[:, 2, 2, 1] .= (0, 1);
julia> grid[:, 3, 2, 1] .= (3, 1);
julia> grid_sample(x, grid; padding_mode=:zeros)
3×2×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
0.0 3.0
1.5 3.5
2.0 0.0
julia> grid_sample(x, grid; padding_mode=:border)
3×2×1×1 Array{Float64, 4}:
[:, :, 1, 1] =
1.0 3.0
1.5 3.5
2.0 4.0
```NNlib.∇grid_sample — Function∇grid_sample(Δ::AbstractArray{T, 4}, input::AbstractArray{T, 4}, grid::AbstractArray{T, 4}; padding_mode = :zeros) where TArguments
Δ: Input gradient in(W_out, H_out, C, N)shape (same as output of the primal computation).input: Input from primal computation in(W_in, H_in, C, N)shape.grid: Grid from primal computation in(2, W_out, H_out, N)shape.padding_mode: Out-of-bound padding.:zerosto use0for out-of-bound grid locations.:borderto use border values for out-of-bound grid locations. Should be the same as in primal computation. Default is:zeros.
Returns
dinput (same shape as input) and dgrid (same shape as grid) gradients.
Losses
NNlib.ctc_loss — Functionctc_loss(ŷ, y)Computes the connectionist temporal classification loss between ŷ and y. ŷ must be a classes-by-time matrices, i.e., each row represents a class and each column represents a time step. Additionally, the logsoftmax function will be applied to ŷ, so ŷ must be the raw activation values from the neural network and not, for example, the activations after being passed through a softmax activation function. y must be a 1D array of the labels associated with ŷ. The blank label is assumed to be the last label category in ŷ, so it is equivalent to size(ŷ, 1). Used for sequence-to-sequence classification problems such as speech recognition and handwriting recognition where the exact time-alignment of the output (e.g., letters) is not needed to solve the problem. See Graves et al. (2006) or Graves (2012) for mathematical details.
Miscellaneous
NNlib.logsumexp — Functionlogsumexp(x; dims = :)Computes log.(sum(exp.(x); dims)) in a numerically stable way. Without dims keyword this returns a scalar.
See also logsoftmax.
NNlib.glu — Functionglu(x, dim = 1)The gated linear unit from the "Language Modeling with Gated Convolutional Networks" paper.
Calculates a .* sigmoid(b), where x is split in half along given dimension dim to form a and b.
NNlib.within_gradient — Functionwithin_gradient(x) --> BoolReturns false except when used inside a gradient call, when it returns true. Useful for Flux regularisation layers which behave differently during training and inference.
This should work with any ChainRules-based differentiation package, in which case x is ignored. But Tracker.jl overloads with_gradient(x::TrackedArray), thus for widest use you should pass it an array whose gradient is of interest. There is also an overload for ForwardDiff.jl's Dual types (and arrays of them).
Examples
julia> using ForwardDiff, Zygote, NNlib
julia> f_good(x) = if NNlib.within_gradient(x)
@show 10x
else
x
end;
julia> Zygote.withgradient(f_good, 1.0)
10x = 10.0
(val = 10.0, grad = (10.0,))
julia> ForwardDiff.derivative(f_good, 1.0)
10x = Dual{ForwardDiff.Tag{typeof(f_good), Float64}}(10.0,10.0)
10.0
julia> f_bad(x, y) = if any(NNlib.within_gradient, (x, y))
@show x * y
else
x / y
end;
julia> Zygote.withgradient(f_bad, 2.0, 3.0)
(val = 0.6666666666666666, grad = (0.3333333333333333, -0.2222222222222222))
julia> ForwardDiff.derivative(x -> f_bad(x, 3.0), 2.0)
x * y = Dual{ForwardDiff.Tag{var"#9#10", Float64}}(6.0,3.0)
3.0What goes wrong in f_bad is that Zygote knows any to be non-differentiable, and thus completely ignores its contents. This is not a perfect mechanism, and the only style recommended is precisely that of f_good above.
NNlib.bias_act! — Functionbias_act!(σ, x, b)This is equivalent to x .= σ.(x .+ b), also replacing sigmoid & tanh with sigmoid_fast & tanh_fast. It will only overwrite x when x isa StridedArray{<:AbstractFloat}.
When used within a gradient, it will overwrite only when σ has a method of derivatives_given_output which does not need the input at all. Such methods are defined by e.g. @scalar_rule relu(x) Ω > 0 where the derivative contains only Ω (the output) not x.