Complex schedules
While the basic schedules tutorial covered the simple decay and cyclic schedules available in ParameterSchedulers.jl, it is possible to more complex schedules for added flexibility.
Arbitrary functions
Sometimes, a simple function is the easiest way to specify a schedule. Similar to PyTorch’s LambdaLR
, ParameterSchedulers.jl provides Lambda
. Unlike the decay or cyclic schedules that conform to a formula, Lambda
simply wraps a given function, f
, and the schedule output is f(t)
. But, unlike like f
alone, Lambda
can be indexed and iterated like all schedules. Below, we wrap a logarithmic function as a schedule.
using UnicodePlots
s = Lambda(f = log)
t = 1:10 |> collect
lineplot(t, map(t -> s[t], t); border = :none)
3 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠤
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠤⠒⠒⠉⠉⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠔⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠤⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
0 ⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
1 10
Arbitrary looping schedules
Let’s take the notion of Lambda
one step further, and instead define how a schedule behaves over a given interval or period. Then, we would like to loop that interval over and over. This is precisely what Loop
achieves. For example, we may want to apply an Exp
schedule for 10 iterations, then repeat from the beginning, and so forth.
s = Loop(f = Exp(λ = 0.1, γ = 0.4), period = 10)
t = 1:25 |> collect
lineplot(t, map(t -> s[t], t); border = :none)
0.1 ⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡟⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀
0 ⠀⠀⠀⠀⠀⠑⠢⢄⣀⣀⣀⣀⣀⡇⠀⠀⠀⠀⠈⠒⠤⣀⣀⣀⣀⣀⣸⠀⠀⠀⠀⠀⠑⠂⠀⠀⠀⠀⠀⠀
0 30
Sequences of schedules
Finally, we might concatenate sequences of schedules, applying each one for a given length, then switch to the next schedule in the order. A Sequence
schedule lets us do this. For example, we can start with a cyclic schedule, then switch to a more conservative exponential schedule half way through training.
nepochs = 50
s = Sequence(schedules = [Tri(λ0 = 0.0, λ1 = 0.5, period = 5), Exp(λ = 0.5, γ = 0.5)],
step_sizes = [nepochs ÷ 2, nepochs ÷ 2])
t = 1:nepochs |> collect
lineplot(t, map(t -> s[t], t); border = :none)
0.5 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢀⡀⠀⠀⢀⡀⠀⠀⢀⡀⠀⠀⢀⡀⠀⠀⠀⡀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡏⡇⡎⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⢱⠀⠀⡇⢱⠀⠀⡇⢸⠀⠀⡇⢱⠀⠀⡇⢸⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⠀⢸⠀⢸⠀⢸⠀⢸⠀⢸⠀⢰⠁⢸⠀⢰⠁⢸⡇⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⠀⢸⠀⢸⠀⢸⠀⢸⠀⢸⠀⢸⠀⢸⠀⢸⠀⢸⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⠀⢸⡀⢸⠀⠸⡀⢸⠀⠸⡀⢸⠀⢸⡀⢸⠀⠸⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⠀⠀⡇⡜⠀⠀⡇⡜⠀⠀⡇⡜⠀⠀⡇⡸⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⡇⡇⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⡇⠀⠀⢇⡇⠀⠀⢇⡇⠀⠀⢇⡇⠀⠀⢣⡇⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⢀⠇⠀⠀⢸⠁⠀⠀⢸⠃⠀⠀⢸⠃⠀⠀⢸⠃⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
0 ⢸⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠣⢄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀
0 50
Alternatively, we might simply wish to manually set the parameter every interval. Sequence
also accepts a vector of numbers.
s = Sequence(schedules = [1e-1, 5e-2, 3.4e-3], step_sizes = [5, 4, 10])
t = 1:20 |> collect
lineplot(t, map(t -> s[t], t); border = :none)
0.1 ⠀⠀⠉⠉⠉⠉⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⠤⠤⠤⠤⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
0 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒
0 20