Complex schedules
While the basic schedules tutorial covered the simple decay and cyclic schedules available in ParameterSchedulers.jl, it is possible to more complex schedules for added flexibility.
Arbitrary functions
Sometimes, a simple function is the easiest way to specify a schedule. Unlike PyTorch’s LambdaLR
, ParameterSchedulers.jl allows you to use the function directly. The schedule output is f(t)
. While you can use f
directly to build up complex schedules (as we’ll see in the next section), it lacks functionality like Base.iterate
. If you want f
to behave more formally like a schedule, implement the generic interface for schedules.
Arbitrary looping schedules
Let’s take the notion of arbitrary schedules one step further, and instead define how a schedule behaves over a given interval or period. Then, we would like to loop that interval over and over. This is precisely what Loop
achieves. For example, we may want to apply an Exp
schedule for 10 iterations, then repeat from the beginning, and so forth.
using UnicodePlots
s = Loop(Exp(λ = 0.1, γ = 0.4), 10)
t = 1:25 |> collect
lineplot(t, s.(t); border = :none)
0.1 ⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡟⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀
0 ⠀⠀⠀⠀⠀⠑⠢⢄⣀⣀⣀⣀⣀⡇⠀⠀⠀⠀⠈⠒⠤⣀⣀⣀⣀⣀⣸⠀⠀⠀⠀⠀⠑⠂⠀⠀⠀⠀⠀⠀
0 30
Or we can just an arbitrary function to loop (e.g. log
).
s = Loop(log, 10)
lineplot(t, s.(t); border = :none)
3 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢴⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠁⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢀⠎⠁⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢠⠇⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
0 ⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
0 30
Sequences of schedules
Finally, we might concatenate sequences of schedules, applying each one for a given length, then switch to the next schedule in the order. A Sequence
schedule lets us do this. For example, we can start with a triangular schedule, then switch to a more conservative exponential schedule half way through training.
nepochs = 50
s = Sequence([Tri(λ0 = 0.0, λ1 = 0.5, period = 5), Exp(λ = 0.5, γ = 0.5)],
[nepochs ÷ 2, nepochs ÷ 2])
t = 1:nepochs |> collect
lineplot(t, s.(t); border = :none)
LoadError("string", 2, UndefVarError(:Tri))
Alternatively, we might simply wish to manually set the parameter every interval. Sequence
also accepts a vector of numbers.
s = Sequence(1e-1 => 5, 5e-2 => 4, 3.4e-3 => 10)
t = 1:20 |> collect
lineplot(t, s.(t); border = :none)
0.1 ⠀⠀⠉⠉⠉⠉⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⠤⠤⠤⠤⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
0 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒
0 20