One-Hot Encoding
It's common to encode categorical variables (like true
, false
or cat
, dog
) in "one-of-k" or "one-hot" form. Flux provides the onehot
function to make this easy.
julia> using Flux: onehot
julia> onehot(:b, [:a, :b, :c])
3-element Flux.OneHotVector:
false
true
false
julia> onehot(:c, [:a, :b, :c])
3-element Flux.OneHotVector:
false
false
true
The inverse is argmax
(which can take a general probability distribution, as well as just booleans).
julia> argmax(ans, [:a, :b, :c])
:c
julia> argmax([true, false, false], [:a, :b, :c])
:a
julia> argmax([0.3, 0.2, 0.5], [:a, :b, :c])
:c
Batches
onehotbatch
creates a batch (matrix) of one-hot vectors, and argmax
treats matrices as batches.
julia> using Flux: onehotbatch
julia> onehotbatch([:b, :a, :b], [:a, :b, :c])
3×3 Flux.OneHotMatrix:
false true false
true false true
false false false
julia> onecold(ans, [:a, :b, :c])
3-element Array{Symbol,1}:
:b
:a
:b
Note that these operations returned OneHotVector
and OneHotMatrix
rather than Array
s. OneHotVector
s behave like normal vectors but avoid any unnecessary cost compared to using an integer index directly. For example, multiplying a matrix with a one-hot vector simply slices out the relevant row of the matrix under the hood.